Flagger on ASM——基于Mixerless Telemetry实现渐进式灰度发布系列 2 应用级扩缩容

简介: 应用级扩缩容是相对于运维级而言的。像监控CPU/内存的利用率就属于应用无关的纯运维指标,针对这种指标进行扩缩容的HPA配置就是运维级扩缩容。而像请求数量、请求延迟、P99分布等指标就属于应用相关的,或者叫业务感知的监控指标。 本篇将介绍3种应用级监控指标在HPA中的配置,以实现应用级自动扩缩容。
+关注继续查看

应用级扩缩容是相对于运维级而言的。像监控CPU/内存的利用率就属于应用无关的纯运维指标,针对这种指标进行扩缩容的HPA配置就是运维级扩缩容。而像请求数量、请求延迟、P99分布等指标就属于应用相关的,或者叫业务感知的监控指标。

本篇将介绍3种应用级监控指标在HPA中的配置,以实现应用级自动扩缩容。

Setup HPA

1 部署metrics-adapter

执行如下命令部署kube-metrics-adapter(完整脚本参见:demo_hpa.sh)。:

helm --kubeconfig "$USER_CONFIG" -n kube-system install asm-custom-metrics \
  $KUBE_METRICS_ADAPTER_SRC/deploy/charts/kube-metrics-adapter \
  --set prometheus.url=http://prometheus.istio-system.svc:9090

执行如下命令验证部署情况:

#验证POD
kubectl --kubeconfig "$USER_CONFIG" get po -n kube-system | grep metrics-adapter

asm-custom-metrics-kube-metrics-adapter-6fb4949988-ht8pv   1/1     Running     0          30s

#验证CRD
kubectl --kubeconfig "$USER_CONFIG" api-versions | grep "autoscaling/v2beta"

autoscaling/v2beta1
autoscaling/v2beta2

#验证CRD
kubectl --kubeconfig "$USER_CONFIG" get --raw "/apis/external.metrics.k8s.io/v1beta1" | jq .

{
  "kind": "APIResourceList",
  "apiVersion": "v1",
  "groupVersion": "external.metrics.k8s.io/v1beta1",
  "resources": []
}

2 部署loadtester

执行如下命令部署flagger loadtester:

kubectl --kubeconfig "$USER_CONFIG" apply -f $FLAAGER_SRC/kustomize/tester/deployment.yaml -n test
kubectl --kubeconfig "$USER_CONFIG" apply -f $FLAAGER_SRC/kustomize/tester/service.yaml -n test

3 部署HPA

3.1 根据应用请求数量扩缩容

首先我们创建一个感知应用请求数量(istio_requests_total)的HorizontalPodAutoscaler配置:

apiVersion: autoscaling/v2beta2
kind: HorizontalPodAutoscaler
metadata:
  name: podinfo-total
  namespace: test
  annotations:
    metric-config.external.prometheus-query.prometheus/processed-requests-per-second: |
      sum(rate(istio_requests_total{destination_workload_namespace="test",reporter="destination"}[1m]))
spec:
  maxReplicas: 5
  minReplicas: 1
  scaleTargetRef:
    apiVersion: apps/v1
    kind: Deployment
    name: podinfo
  metrics:
    - type: External
      external:
        metric:
          name: prometheus-query
          selector:
            matchLabels:
              query-name: processed-requests-per-second
        target:
          type: AverageValue
          averageValue: "10"

执行如下命令部署这个HPA配置:

kubectl --kubeconfig "$USER_CONFIG" apply -f resources_hpa/requests_total_hpa.yaml

执行如下命令校验:

kubectl --kubeconfig "$USER_CONFIG" get --raw "/apis/external.metrics.k8s.io/v1beta1" | jq .

结果如下:

{
  "kind": "APIResourceList",
  "apiVersion": "v1",
  "groupVersion": "external.metrics.k8s.io/v1beta1",
  "resources": [
    {
      "name": "prometheus-query",
      "singularName": "",
      "namespaced": true,
      "kind": "ExternalMetricValueList",
      "verbs": [
        "get"
      ]
    }
  ]
}

类似地,我们可以使用其他维度的应用级监控指标配置HPA。举例如下,不再冗述。

3.2 根据平均延迟扩缩容

apiVersion: autoscaling/v2beta2
kind: HorizontalPodAutoscaler
metadata:
  name: podinfo-latency-avg
  namespace: test
  annotations:
    metric-config.external.prometheus-query.prometheus/latency-average: |
      sum(rate(istio_request_duration_milliseconds_sum{destination_workload_namespace="test",reporter="destination"}[1m]))
      /sum(rate(istio_request_duration_milliseconds_count{destination_workload_namespace="test",reporter="destination"}[1m]))
spec:
  maxReplicas: 5
  minReplicas: 1
  scaleTargetRef:
    apiVersion: apps/v1
    kind: Deployment
    name: podinfo
  metrics:
    - type: External
      external:
        metric:
          name: prometheus-query
          selector:
            matchLabels:
              query-name: latency-average
        target:
          type: AverageValue
          averageValue: "0.005"

3.3 根据P95分布扩缩容

apiVersion: autoscaling/v2beta2
kind: HorizontalPodAutoscaler
metadata:
  name: podinfo-p95
  namespace: test
  annotations:
    metric-config.external.prometheus-query.prometheus/p95-latency: |
      histogram_quantile(0.95,sum(irate(istio_request_duration_milliseconds_bucket{destination_workload_namespace="test",destination_canonical_service="podinfo"}[5m]))by (le))
spec:
  maxReplicas: 5
  minReplicas: 1
  scaleTargetRef:
    apiVersion: apps/v1
    kind: Deployment
    name: podinfo
  metrics:
    - type: External
      external:
        metric:
          name: prometheus-query
          selector:
            matchLabels:
              query-name: p95-latency
        target:
          type: AverageValue
          averageValue: "4"

验证HPA

1 生成负载

执行如下命令产生实验流量,以验证HPA配置自动扩容生效。

alias k="kubectl --kubeconfig $USER_CONFIG"
loadtester=$(k -n test get pod -l "app=flagger-loadtester" -o jsonpath='{.items..metadata.name}')
k -n test exec -it ${loadtester} -c loadtester -- hey -z 5m -c 2 -q 10 http://podinfo:9898

这里运行了一个持续5分钟、QPS=10、并发数为2的请求。

hey命令详细参考如下:

Usage: hey [options...] <url>

Options:
  -n  Number of requests to run. Default is 200.
  -c  Number of workers to run concurrently. Total number of requests cannot
      be smaller than the concurrency level. Default is 50.
  -q  Rate limit, in queries per second (QPS) per worker. Default is no rate limit.
  -z  Duration of application to send requests. When duration is reached,
      application stops and exits. If duration is specified, n is ignored.
      Examples: -z 10s -z 3m.
  -o  Output type. If none provided, a summary is printed.
      "csv" is the only supported alternative. Dumps the response
      metrics in comma-separated values format.

  -m  HTTP method, one of GET, POST, PUT, DELETE, HEAD, OPTIONS.
  -H  Custom HTTP header. You can specify as many as needed by repeating the flag.
      For example, -H "Accept: text/html" -H "Content-Type: application/xml" .
  -t  Timeout for each request in seconds. Default is 20, use 0 for infinite.
  -A  HTTP Accept header.
  -d  HTTP request body.
  -D  HTTP request body from file. For example, /home/user/file.txt or ./file.txt.
  -T  Content-type, defaults to "text/html".
  -a  Basic authentication, username:password.
  -x  HTTP Proxy address as host:port.
  -h2 Enable HTTP/2.

  -host HTTP Host header.

  -disable-compression  Disable compression.
  -disable-keepalive    Disable keep-alive, prevents re-use of TCP
                        connections between different HTTP requests.
  -disable-redirects    Disable following of HTTP redirects
  -cpus                 Number of used cpu cores.
                        (default for current machine is 4 cores)

2 自动扩容

执行如下命令观察扩容情况:

watch kubectl --kubeconfig $USER_CONFIG -n test get hpa/podinfo-total

结果如下:

Every 2.0s: kubectl --kubeconfig /Users/han/shop_config/ack_zjk -n test get hpa/podinfo                                            East6C16G: Tue Jan 26 18:01:30 2021

NAME      REFERENCE            TARGETS           MINPODS   MAXPODS   REPLICAS   AGE
podinfo   Deployment/podinfo   10056m/10 (avg)   1         5         2          4m45s

另外两个HPA类似,命令如下:

kubectl --kubeconfig $USER_CONFIG -n test get hpa

watch kubectl --kubeconfig $USER_CONFIG -n test get hpa/podinfo-latency-avg
watch kubectl --kubeconfig $USER_CONFIG -n test get hpa/podinfo-p95

3 监控指标

同时,我们可以实时在Prometheus中查看相关的应用级监控指标的实时数据。示意如下:

10dbef80efc092ca2014ac32f3d78aa7.png

目录
相关文章
|
6月前
|
存储 Serverless 异构计算
使用ASM管理Knative服务(2):使用Knative on ASM部署Serverless应用
如何在阿里云服务网格ASM中开启Knative on ASM功能, 并结合ACK或者ASK部署管理Serverless应用服务。
325 0
使用ASM管理Knative服务(2):使用Knative on ASM部署Serverless应用
|
8月前
|
存储 Java Spring
从零开始造Spring04---补充之ASM的原理以及在Spring中的应用
ASM 是一个可以操作Java 字节码的框架。可以读取/修改class中的字节码。ASM可以直接产生二进制class文件,也可以在类被加载Java虚拟机之前动态改变类行为,Java class被存储在严格格式定义的.class文件里,这些文件拥有足够的元数据来解析勒种的所有元素:类名称, 方法,属性以及Java字节码(指令)。ASM从类文件中读入信息后,能够改变类行为,分析类信息,甚至能够根据用户要求生成新类。
151 0
从零开始造Spring04---补充之ASM的原理以及在Spring中的应用
|
9月前
|
存储 Rust 安全
服务网格eBPF应用探索之(一)eBPF基础知识
1)技术背景在eBPF诞生之前,对内核的调试和开发有着相当高的门槛,不仅要十分熟悉庞大的内核代码及开发流程,同时重新编译内核后若希望生效还需要重启OS,开发效率也相当低下。而eBPF提供了相当友好的内核开发/观测机制,即:由用户编写符合一定规范的代码,编译后加载至内核,内核会在指定的时机执行这段代码,内核同时还会将Hook点相关的上下文传递给这段代码供使用,代码可以修改上下文,或是通过返回值来改变
395 0
服务网格eBPF应用探索之(一)eBPF基础知识
|
10月前
|
Kubernetes 安全 网络协议
如何利用服务网格ASM让集群中监听localhost的应用能够被其它Pod访问
作为业内首个全托管Istio兼容的阿里云服务网格产品ASM,一开始从架构上就保持了与社区、业界趋势的一致性,控制平面的组件托管在阿里云侧,与数据面侧的用户集群独立。ASM产品是基于社区Istio定制实现的,在托管的控制面侧提供了用于支撑精细化的流量管理和安全管理的组件能力。通过托管模式,解耦了Istio组件与所管理的K8s集群的生命周期管理,使得架构更加灵活,提升了系统的可伸缩性。本文介绍如何在应
|
运维 Kubernetes 安全
ASM单点登录(二)ASM + 阿里云身份服务IDaaS实现网格内应用单点登录
作为业内首个全托管Istio兼容的阿里云服务网格产品ASM,一开始从架构上就保持了与社区、业界趋势的一致性,控制平面的组件托管在阿里云侧,与数据面侧的用户集群独立。ASM产品是基于社区Istio定制实现的,在托管的控制面侧提供了用于支撑精细化的流量管理和安全管理的组件能力。通过托管模式,解耦了Istio组件与所管理的K8s集群的生命周期管理,使得架构更加灵活,提升了系统的可伸缩性。从2022年4月
359 0
ASM单点登录(二)ASM + 阿里云身份服务IDaaS实现网格内应用单点登录
|
Kubernetes 安全 容器
ASM单点登录(一)ASM + Keycloak实现网格内应用单点登录
作为业内首个全托管Istio兼容的阿里云服务网格产品ASM,一开始从架构上就保持了与社区、业界趋势的一致性,控制平面的组件托管在阿里云侧,与数据面侧的用户集群独立。ASM产品是基于社区Istio定制实现的,在托管的控制面侧提供了用于支撑精细化的流量管理和安全管理的组件能力。通过托管模式,解耦了Istio组件与所管理的K8s集群的生命周期管理,使得架构更加灵活,提升了系统的可伸缩性。从2022年4月
396 0
ASM单点登录(一)ASM + Keycloak实现网格内应用单点登录
|
人工智能 运维 Kubernetes
托管式服务网格:云原生时代的应用体系架构进化
以下内容是基于作者在云原生产业2022年大会上的演讲内容。
托管式服务网格:云原生时代的应用体系架构进化
|
Cloud Native 搜索推荐 开发者
直播预告 | 服务网格规模化应用下的 Istio Sidecar 灵活配置实践
5 月 25 日(周三), 阿里云服务网格技术专家张岚(宗泉)、阿里云服务网格开发工程师刘阳(奇方),将通过直播的方式为大家带来服务网格规模化应用下的 Istio Sidecar 灵活配置实践。从 Istio Sidecar 代理配置现状分析,到阿里云服务网格中多维度灵活配置方案解读,再到业务场景中的 Sidecar 代理配置实践......通过本次分享,希望能帮助大家在不同的业务场景下灵活配置 Sidecar 代理的配置来满足个性化需求、优化系统性能。
直播预告 | 服务网格规模化应用下的 Istio Sidecar 灵活配置实践
|
人工智能 运维 Kubernetes
服务网格规模化应用下的Istio Sidecar配置管理挑战与实践|IstioCon 2022
阿里云服务网格 ASM 在帮助客户落地实践过程中发现,随着集群管理的规模增长和配置复杂度的提升,对于不同的工作负载,目前 Sidecar 代理配置不够灵活。希望通过本次分享,能帮助大家在不同的业务场景下灵活配置 Sidecar 代理的配置来满足个性化需求、优化系统性能。
736 0
服务网格规模化应用下的Istio Sidecar配置管理挑战与实践|IstioCon 2022
|
运维 Kubernetes 中间件
MOSN 子项目 Layotto:开启服务网格+应用运行时新篇章
本文主要对 Service Mesh 在蚂蚁内部落地情况进行回顾总结,并分享对 Service Mesh 落地后遇到的新问题的解决方案。
MOSN 子项目 Layotto:开启服务网格+应用运行时新篇章
相关产品
容器镜像服务
容器服务Kubernetes版
推荐文章
更多