【OpenYurt 深度解析】边缘网关缓存能力的优雅实现

本文涉及的产品
可观测链路 OpenTelemetry 版,每月50GB免费额度
Serverless 应用引擎免费试用套餐包,4320000 CU,有效期3个月
容器镜像服务 ACR,镜像仓库100个 不限时长
简介: 阿里云边缘容器服务上线 1 年后,正式开源了云原生边缘计算解决方案 OpenYurt,跟其他开源的容器化边缘计算方案不同的地方在于:OpenYurt 秉持 Extending your native Kubernetes to edge 的理念,对 Kubernetes 系统零修改,并提供一键式转换原生 Kubernetes 为 OpenYurt,让原生 K8s 集群具备边缘集群能力。

头图.png

作者 | 何淋波(新胜)
来源 | 阿里巴巴云原生公众号

OpenYurt:延伸原生 K8s 的能力到边缘

阿里云边缘容器服务上线 1 年后,正式开源了云原生边缘计算解决方案 OpenYurt,跟其他开源的容器化边缘计算方案不同的地方在于:OpenYurt 秉持 Extending your native Kubernetes to edge 的理念,对 Kubernetes 系统零修改,并提供一键式转换原生 Kubernetes 为 OpenYurt,让原生 K8s 集群具备边缘集群能力。

同时随着 OpenYurt 的持续演进,也一定会继续保持如下发展理念:

  • 非侵入式增强 K8s
  • 保持和云原生社区主流技术同步演进

OpenYurt 如何解决边缘自治问题

想要实现将 Kubernetes 系统延展到边缘计算场景,那么边缘节点将通过公网和云端连接,网络连接有很大不可控因素,可能带来边缘业务运行的不稳定因素,这是云原生和边缘计算融合的主要难点之一。

解决这个问题,需要使边缘侧具有自治能力,即当云边网络断开或者连接不稳定时,确保边缘业务可以持续运行。在 OpenYurt 中,该能力由 yurt-controller-manager 和 YurtHub 组件提供。

1. YurtHub 架构

在之前的文章中,我们详细介绍了 YurtHub 组件的能力。其架构图如下:

1.png

图片链接

YurtHub 是一个带有数据缓存功能的“透明网关”,和云端网络断连状态下,如果节点或者组件重启,各个组件(kubelet/kube-proxy 等)将从 YurtHub 中获取到业务容器相关数据,有效解决边缘自治的问题。这也意味着我们需要实现一个轻量的带数据缓存能力的反向代理。

2. 第一想法

实现一个缓存数据的反向代理,第一想法就是从 response.Body 中读取数据,然后分别返回给请求 client 和本地的 Cache 模块。伪代码如下:

func HandleResponse(rw http.ResponseWriter, resp *http.Response) {
        bodyBytes, _ := ioutil.ReadAll(resp.Body)
        go func() {
                // cache response on local disk
                cacher.Write(bodyBytes)
        }

        // client reads data from response
        rw.Write(bodyBytes)
}

当深入思考后,在 Kubernetes 系统中,上述实现会引发下面的问题:

  • 问题 1:流式数据需要如何处理(如: K8s 中的 watch 请求),意味 ioutil.ReadAll() 一次调用无法返回所有数据。即如何可以返回流数据同时又缓存流数据。
  • 问题 2:同时在本地缓存数据前,有可能需要对传入的 byte slice 数据先进行清洗处理。这意味着需要修改 byte slice,或者先备份 byte slice 再处理。这样会造成内存的大量消耗,同时针对流式数据,到底申请多大的 slice 也不好处理。

3. 优雅实现探讨

针对上面的问题,我们将问题逐个抽象,可以发现更优雅的实现方法。

  • 问题 1:如何对流数据同时进行读写

针对流式数据的读写(一边返回一边缓存),如下图所示,其实需要的不过是把 response.Body(io.Reader) 转换成一个 io.Reader 和一个 io.Writer。或者说是一个 io.Reader 和 io.Writer 合成一个 io.Reader。这很容易就联想到 Linux 里面的 Tee 命令。

2.png

而在 Golang 中 Tee 命令是实现就是io.TeeReader,那问题 1 的伪代码如下:

func HandleResponse(rw http.ResponseWriter, resp *http.Response) {
        // create TeeReader with response.Body and cacher
        newRespBody := io.TeeReader(resp.Body, cacher)

        // client reads data from response
        io.Copy(rw, newRespBody)
}

通过 TeeReader 的对 Response.Body 和 Cacher 的整合,当请求 client 端从 response.Body 中读取数据时,将同时向 Cache 中写入返回数据,优雅的解决了流式数据的处理。

  • 问题 2:如何在缓存前先清洗流数据

如下图所示,缓存前先清洗流数据,请求端和过滤端需要同时读取 response.Body(2 次读取问题)。也就是需要将 response.Body(io.Reader) 转换成两个 io.Reader。

3.png

也意味着问题 2 转化成:问题 1 中缓存端的 io.Writer 转换成 Data Filter 的 io.Reader。其实在 Linux 命令中也能找到类似命令,就是管道。因此问题 2 的伪代码如下:

func HandleResponse(rw http.ResponseWriter, resp *http.Response) {
        pr, pw := io.Pipe()
        // create TeeReader with response.Body and Pipe writer
        newRespBody := io.TeeReader(resp.Body, pw)
        go func() {
                // filter reads data from response 
                io.Copy(dataFilter, pr)
        }

        // client reads data from response
        io.Copy(rw, newRespBody)
}

通过 io.TeeReader 和 io.PiPe,当请求 client 端从 response.Body 中读取数据时,Filter 将同时从 Response 读取到数据,优雅的解决了流式数据的 2 次读取问题。

YurtHub 实现

最后看一下 YurtHub 中相关实现,由于 Response.Body 为 io.ReadCloser,所以实现了 dualReadCloser。同时 YurtHub 可能也面临对 http.Request 的缓存,所以增加了 isRespBody 参数用于判定是否需要负责关闭 response.Body。

// https://github.com/openyurtio/openyurt/blob/master/pkg/yurthub/util/util.go#L156
// NewDualReadCloser create an dualReadCloser object
func NewDualReadCloser(rc io.ReadCloser, isRespBody bool) (io.ReadCloser, io.ReadCloser) {
    pr, pw := io.Pipe()
    dr := &dualReadCloser{
        rc:         rc,
        pw:         pw,
        isRespBody: isRespBody,
    }

    return dr, pr
}

type dualReadCloser struct {
    rc io.ReadCloser
    pw *io.PipeWriter
    // isRespBody shows rc(is.ReadCloser) is a response.Body
    // or not(maybe a request.Body). if it is true(it's a response.Body),
    // we should close the response body in Close func, else not,
    // it(request body) will be closed by http request caller
    isRespBody bool
}

// Read read data into p and write into pipe
func (dr *dualReadCloser) Read(p []byte) (n int, err error) {
    n, err = dr.rc.Read(p)
    if n > 0 {
        if n, err := dr.pw.Write(p[:n]); err != nil {
            klog.Errorf("dualReader: failed to write %v", err)
            return n, err
        }
    }

    return
}

// Close close two readers
func (dr *dualReadCloser) Close() error {
    errs := make([]error, 0)
    if dr.isRespBody {
        if err := dr.rc.Close(); err != nil {
            errs = append(errs, err)
        }
    }

    if err := dr.pw.Close(); err != nil {
        errs = append(errs, err)
    }

    if len(errs) != 0 {
        return fmt.Errorf("failed to close dualReader, %v", errs)
    }

    return nil
}

在使用 dualReadCloser 时,可以在httputil.NewSingleHostReverseProxy的modifyResponse()方法中看到。代码如下:

// https://github.com/openyurtio/openyurt/blob/master/pkg/yurthub/proxy/remote/remote.go#L85
func (rp *RemoteProxy) modifyResponse(resp *http.Response) error {rambohe-ch, 10 months ago: • hello openyurt
            // 省略部分前置检查                                                          
            rc, prc := util.NewDualReadCloser(resp.Body, true)
            go func(ctx context.Context, prc io.ReadCloser, stopCh <-chan struct{}) {
                err := rp.cacheMgr.CacheResponse(ctx, prc, stopCh)
                if err != nil && err != io.EOF && err != context.Canceled {
                    klog.Errorf("%s response cache ended with error, %v", util.ReqString(req), err)
                }
            }(ctx, prc, rp.stopCh)

            resp.Body = rc
}

总结

OpenYurt 于 2020 年 9 月进入 CNCF 沙箱后,持续保持了快速发展和迭代,在社区同学一起努力下,目前已经开源的能力有:

  • 边缘自治
  • 边缘单元化管理
  • 云边协同运维
  • 一键式无缝转换能力

同时在和社区同学的充分讨论下,OpenYurt 社区也发布了2021 roadmap,欢迎有兴趣的同学来一起贡献。
如果大家对 OpenYurt 感兴趣,欢迎扫码加入我们的社区交流群,以及访问 OpenYurt 官网和 GitHub 项目地址:

相关文章
|
3月前
|
缓存 NoSQL Java
Redis深度解析:解锁高性能缓存的终极武器,让你的应用飞起来
【8月更文挑战第29天】本文从基本概念入手,通过实战示例、原理解析和高级使用技巧,全面讲解Redis这一高性能键值对数据库。Redis基于内存存储,支持多种数据结构,如字符串、列表和哈希表等,常用于数据库、缓存及消息队列。文中详细介绍了如何在Spring Boot项目中集成Redis,并展示了其工作原理、缓存实现方法及高级特性,如事务、发布/订阅、Lua脚本和集群等,帮助读者从入门到精通Redis,大幅提升应用性能与可扩展性。
67 0
|
12天前
|
弹性计算 网络协议 网络安全
内网DNS解析&VPN网关联动实现云上访问云下资源
内网DNS解析&VPN网关联动实现云上访问云下资源
|
2月前
|
存储 缓存 Java
在Spring Boot中使用缓存的技术解析
通过利用Spring Boot中的缓存支持,开发者可以轻松地实现高效和可扩展的缓存策略,进而提升应用的性能和用户体验。Spring Boot的声明式缓存抽象和对多种缓存技术的支持,使得集成和使用缓存变得前所未有的简单。无论是在开发新应用还是优化现有应用,合理地使用缓存都是提高性能的有效手段。
31 1
|
2月前
|
存储 缓存 Android开发
Android RecyclerView 缓存机制深度解析与面试题
本文首发于公众号“AntDream”,详细解析了 `RecyclerView` 的缓存机制,包括多级缓存的原理与流程,并提供了常见面试题及答案。通过本文,你将深入了解 `RecyclerView` 的高性能秘诀,提升列表和网格的开发技能。
63 8
|
3月前
|
缓存 监控 网络协议
DNS缓存中毒
【8月更文挑战第19天】
69 16
|
3月前
|
存储 缓存 监控
警惕网络背后的陷阱:揭秘DNS缓存中毒如何悄然改变你的网络走向
【8月更文挑战第26天】DNS缓存中毒是一种网络攻击,通过篡改DNS服务器缓存,将用户重定向到恶意站点。攻击者利用伪造响应、事务ID猜测及中间人攻击等方式实施。这可能导致隐私泄露和恶意软件传播。防范措施包括使用DNSSEC、限制响应来源、定期清理缓存以及加强监控。了解这些有助于保护网络安全。
66 1
|
3月前
|
缓存 算法 前端开发
深入理解缓存淘汰策略:LRU和LFU算法的解析与应用
【8月更文挑战第25天】在计算机科学领域,高效管理资源对于提升系统性能至关重要。内存缓存作为一种加速数据读取的有效方法,其管理策略直接影响整体性能。本文重点介绍两种常用的缓存淘汰算法:LRU(最近最少使用)和LFU(最不经常使用)。LRU算法依据数据最近是否被访问来进行淘汰决策;而LFU算法则根据数据的访问频率做出判断。这两种算法各有特点,适用于不同的应用场景。通过深入分析这两种算法的原理、实现方式及适用场景,本文旨在帮助开发者更好地理解缓存管理机制,从而在实际应用中作出更合理的选择,有效提升系统性能和用户体验。
151 1
|
3月前
|
缓存 网络协议 API
【API管理 APIM】APIM中对后端API服务的DNS域名缓存问题
【API管理 APIM】APIM中对后端API服务的DNS域名缓存问题
|
3月前
|
缓存 网络协议 安全
DNS缓存中毒
【8月更文挑战第20天】
93 1
|
3月前
|
域名解析 存储 缓存
破解 DNS 缓存的秘密:一个简单实验揭示定时刷新背后的惊人真相!
【8月更文挑战第27天】本文介绍DNS缓存管理的重要性及其实现方法。DNS缓存用于快速响应重复的域名解析请求,但因IP地址变动需定期刷新以确保信息准确。文章提供一个基于Python的示例脚本,模拟DNS缓存刷新过程,包括添加、查询记录以及清除过期项等功能。尽管实际环境中这些任务常由专业DNS服务软件自动处理,但该示例有助于理解DNS缓存的工作机制及其维护策略。
53 0

推荐镜像

更多