人工智能技术如何在药物开发中识别正确的药物成分

简介: 在采用数字技术时,制药行业的应用往往比较缓慢。迄今为止,很多制药厂商已经推迟了使用人工智能和机器学习策略开发药物的想法。人工智能有可能在药物开发领域掀起创新浪潮。然而,制药行业应努力弥补应用于药物发现和开发过程之间的差距。

image.png

在采用数字技术时,制药行业的应用往往比较缓慢。迄今为止,很多制药厂商已经推迟了使用人工智能和机器学习策略开发药物的想法。人工智能有可能在药物开发领域掀起创新浪潮。然而,制药行业应努力弥补应用于药物发现和开发过程之间的差距。

医疗保健行业已迅速将人工智能技术纳入其中。人工智能及其分支技术正在大规模地应用在医疗行业。但是,制药行业仍处于利用数字技术来加速药物开发过程的初期阶段。药物发现的主要目的是确定对人体有益的药物。寻找正确的药物是一个漫长的过程,需要对大型筛选分子库的分子进行筛选,这些分子库可以特异性地结合与疾病相关的靶分子。寻找合适药物的任务经过了无数轮测试,将其开发成有希望的化合物。根据Taconic Biosciences公司的调查,制药厂商将会花费大量的时间和费用,而将一种药物推向市场的平均成本超过28亿美元,开发时间长达12年。幸运的是,人工智能可以帮助制药行业找到合适的药物并加以开发。人工智能使用拟人化知识,并从其产生的解决方案中学习,以解决医学领域中的特定问题和复杂问题。

人工智能平台用于药物开发

如果通过人工进行药物开发,则是一个漫长的过程。在以往,研究人员必须确定导致疾病的靶蛋白并进行长期研究。接下来,他们试图找出哪些成分或分子会影响蛋白质。在这个过程中,研究人员确保找到安全高效的分子并进一步使用。人工智能在药物发现中的作用始于找到更好地定位蛋白质的分子。研究人员无法测试大量的分子。这个过程既冗长又成本高昂。幸运的是,人工智能平台可以通过简单的分析代替漫长的测试过程。研究人员将参数输入人工智能平台,并使其对分子进行分析。人工智能平台确定了可用于药物开发的正确分子。

神经网络在药物开发中的应用

尽管深度神经网络已经应用在科技领域,但直到2012年才引起广泛关注。多伦多大学的研究人员在使用ImageNet大规模视觉识别挑战赛(ILSVR)的过程中使用了深度神经网络。很多制药厂商正在使用各种类型的深度神经网络来探索经典的统计技术。该技术有助于找到有效药物的正确分子。深度神经网络为化学家们提供了一个即时的指示,告诉他们该怎么做才能消除某些不必要的活动。这种深度神经网络模型也被化学家用来判断他们的复合想法,然后再决定是否合成它们。

人工智能中的大数据有助于药物开发

医疗保健数据非常重要。如今,数以百万计的研究、反馈、报告、患者记录以及与医疗保健行业相关的许多其他事物以大数据的形式被输入到人工智能系统中。尽管医疗保健部门在从他们那里获得解决方案的速度相当慢,但医疗机构仍在尽最大努力保持领先地位。人工智能系统的特征在于采用了一种适当的机制来浏览数据,并从中进行有意义的解释。深度学习程序根据采集的数据运行,并更多地了解蛋白质的存在。以及这些蛋白质在健康人和患者之间产生差异。与此同时,机器学习技术可以努力寻找并建立蛋白质与疾病之间的联系。

人工智能在阶段性药物开发中的应用

在冠状病毒疫情爆发之前,没有人认为疫苗研发过程能够更加快速。疫苗的研制和试验需要多年的研究和观察。然而发生的疫情打破了常规。世界各国政府都在竞相尽快研制出有效的疫苗。在此期间,制药行业获得的投资猛增。随着加速试验并获得紧急批准,制药厂商利用人工智能技术为疫苗的生产过程提供帮助。

药物开发中的人工智能(第一阶段):开发正确的药物需要阅读和分析已有的文献,测试潜在药物与靶点的相互作用方式。人工智能比人类更快地执行任务,并快速提供结果。

临床前开发中的人工智能(第二阶段):在临床开发阶段,其药物已在动物身上进行了测试以查看其表现。在这一阶段公布人工智能将有助于试验顺利进行,并使研究人员能够更快、更成功地预测药物与动物模型的相互作用。

人工智能在临床试验中(第三阶段):研究人员在临床试验期间开始在人体上测试该药物。人工智能可以促进临床试验期间参与者的监测,更快地生成更大的数据集,并通过个性化试验体验来帮助保留参与者。

道德上的缺陷

尽管人工智能在很大程度上帮助了药物开发,但它也引发了一些令人关注的伦理问题。医疗保健行业存储了大量患者的数据。如果这些关键数据掌握在黑客或不良分子手中,则有可能将其用于不良目的。而医疗机构需要维护患者的隐私,与许多其他部门不同,虽然没有任何法规或政策可以指导药品生产商这样做,但他们有责任保护患者数据并以正确的方式使用。


本文转自51CTO,本文一切观点和机器智能技术圈子无关。原文链接
在线免费体验百种AI能力:【点此跳转】
机器智能技术结尾二维码.png

目录
相关文章
|
5天前
|
人工智能 自然语言处理 机器人
文档智能与RAG技术如何提升AI大模型的业务理解能力
随着人工智能的发展,AI大模型在自然语言处理中的应用日益广泛。文档智能和检索增强生成(RAG)技术的兴起,为模型更好地理解和适应特定业务场景提供了新方案。文档智能通过自动化提取和分析非结构化文档中的信息,提高工作效率和准确性。RAG结合检索机制和生成模型,利用外部知识库提高生成内容的相关性和准确性。两者的结合进一步增强了AI大模型的业务理解能力,助力企业数字化转型。
35 3
|
3天前
|
人工智能 文字识别 运维
AI多模态的5大核心关键技术,让高端制造实现智能化管理
结合大模型应用场景,通过AI技术解析高端制造业的复杂设备与文档数据,自动化地将大型零件、机械图纸、操作手册等文档结构化。核心技术包括版面识别、表格抽取、要素抽取和文档抽取,实现信息的系统化管理和高效查询,大幅提升设备维护和生产管理的效率。
|
6天前
|
机器学习/深度学习 人工智能 自然语言处理
人工智能与深度学习:探索未来技术的无限可能
在21世纪,人工智能(AI)和深度学习已经成为推动科技进步的重要力量。本文将深入探讨这两种技术的基本概念、发展历程以及它们如何共同塑造未来的科技景观。我们将分析人工智能的最新趋势,包括自然语言处理、计算机视觉和强化学习,并讨论这些技术在现实世界中的应用。此外,我们还将探讨深度学习的工作原理,包括神经网络、卷积神经网络(CNN)和循环神经网络(RNN),并分析这些模型如何帮助解决复杂的问题。通过本文,读者将对人工智能和深度学习有更深入的了解,并能够预见这些技术将如何继续影响我们的世界。
33 7
|
5天前
|
人工智能 自然语言处理 自动驾驶
技术与人性:探索人工智能伦理的边界####
本文深入探讨了人工智能技术飞速发展背景下,伴随而来的伦理挑战与社会责任。不同于传统摘要直接概述内容,本文摘要旨在引发读者对AI伦理问题的关注,通过提出而非解答的方式,激发对文章主题的兴趣。在智能机器逐渐融入人类生活的每一个角落时,我们如何确保技术的善意使用,保护个人隐私,避免偏见与歧视,成为亟待解决的关键议题。 ####
|
13天前
|
机器学习/深度学习 人工智能 自然语言处理
思通数科AI平台在尽职调查中的技术解析与应用
思通数科AI多模态能力平台结合OCR、NLP和深度学习技术,为IPO尽职调查、融资等重要交易环节提供智能化解决方案。平台自动识别、提取并分类海量文档,实现高效数据核验与合规性检查,显著提升审查速度和精准度,同时保障敏感信息管理和数据安全。
62 11
|
8天前
|
人工智能 自然语言处理 算法
企业内训|AI/大模型/智能体的测评/评估技术-某电信运营商互联网研发中心
本课程是TsingtaoAI专为某电信运营商的互联网研发中心的AI算法工程师设计,已于近日在广州对客户团队完成交付。课程聚焦AI算法工程师在AI、大模型和智能体的测评/评估技术中的关键能力建设,深入探讨如何基于当前先进的AI、大模型与智能体技术,构建符合实际场景需求的科学测评体系。课程内容涵盖大模型及智能体的基础理论、测评集构建、评分标准、自动化与人工测评方法,以及特定垂直场景下的测评实战等方面。
43 4
|
8天前
|
机器学习/深度学习 人工智能 算法
基于AI的性能优化技术研究
基于AI的性能优化技术研究
|
12天前
|
机器学习/深度学习 人工智能 算法
AI技术在医疗健康领域的应用与挑战####
本文旨在探讨人工智能(AI)技术在医疗健康领域的创新应用及其面临的主要挑战。通过深入分析AI如何助力疾病诊断、治疗方案优化、患者管理及药物研发,本文揭示了AI技术在提升医疗服务质量、效率和可及性方面的巨大潜力。同时,文章也指出了数据隐私、伦理道德、技术局限性等关键问题,并提出了相应的解决策略和未来发展方向。本文为医疗从业者、研究者及政策制定者提供了对AI医疗技术的全面理解,促进了跨学科合作与创新。 ####
|
11天前
|
人工智能 算法
AI技术在医疗领域的应用及其挑战
【10月更文挑战第31天】本文将探讨AI技术在医疗领域的应用及其面临的挑战。我们将从AI技术的基本概念开始,然后详细介绍其在医疗领域的应用,包括疾病诊断、药物研发、患者护理等方面。最后,我们将讨论AI技术在医疗领域面临的挑战,如数据隐私、算法偏见等问题。
|
11天前
|
存储 人工智能 文字识别
AI与OCR:数字档案馆图像扫描与文字识别技术实现与项目案例
本文介绍了纸质档案数字化的技术流程,包括高精度扫描、图像预处理、自动边界检测与切割、文字与图片分离抽取、档案识别与文本提取,以及识别结果的自动保存。通过去噪、增强对比度、校正倾斜等预处理技术,提高图像质量,确保OCR识别的准确性。平台还支持多字体识别、批量处理和结构化存储,实现了高效、准确的档案数字化。具体应用案例显示,该技术在江西省某地质资料档案馆中显著提升了档案管理的效率和质量。