中国研究者开发AI系统,平均3秒内识别新冠肺炎和普通感冒

简介: 秋冬季节也是其他呼吸道疾病的高发期,这让新冠肺炎的鉴别、诊断和治疗变得更加困难。近期,《自然》子刊《自然通讯》发布的论文显示,中国研究员已开发一种基于深度学习的人工智能系统,可用来快速地区分新冠肺炎和其他呼吸道疾病。

世界卫生组织最新数据显示,截至10月19日,全球新冠肺炎确诊人数已超过九百万,累计死亡人数已过一百万。随着秋冬季节的来临,国内新冠肺炎的疫情是否会卷土重来成为人们关注的话题。

值得注意的是,秋冬季节也是其他呼吸道疾病的高发期,这让新冠肺炎的鉴别、诊断和治疗变得更加困难。近期,《自然》子刊《自然通讯》发布的论文显示,中国研究员已开发一种基于深度学习的人工智能系统,可用来快速地区分新冠肺炎和其他呼吸道疾病。

基于1万多份CT扫描数据构建

据了解,这篇论文题为《新型冠状病毒(COVID-19)人工智能诊断系统的开发与评估》(Development and evaluation of an artificial intelligence system for COVID-19 diagnosis),由清华大学自动化系和华中科技大学同济医学院附属协和医院两个科研团队共同完成。

论文指出,目前胸部成像技术可显示出肺部早期病变,可被广泛使用且经济适用。但是,胸部CT影像包含数百个切片影像,医生的诊断时间较长;另外,由于新冠肺炎与其他肺炎在症状上存在相似性,放射科医生要积累大量的经验才能实现高效诊断。一旦新冠肺炎和流感同时爆发,CT诊断工作量将远远超过现有放射科医生能够负荷的数量。

针对诊断困难的问题,研究人员提出一种基于深度学习的人工智能诊断系统。该系统可以直接输入CT影像数据,并从中提取和分割出肺部区域的数据。系统由五个关键部分组成:肺部分割网络、切片诊断网络、冠状病毒感染切片定位网络、解释深层网络的可视化模块,以及解释关注区域特征的图像表型分析模块。

image.png
人工智能系统工作流程

据悉,这套人工智能系统的开发和评估数据来自武汉三所医院和四个公开数据库,包含了新型冠状病毒、流感A/B、非病毒性社区获得性肺炎(以下简称CAP)以及非肺炎受试者超过1万份的胸部CT数据。

实验中人工智能系统读片速度更快

在进一步的研究中,研究人员将人工智能系统和五名经验丰富的放射科医生进行对比。这五名医生的从业时间均在5年以上,每年大约要读取3000-5000位患者的CT影像数据。结果显示,放射科医生的平均阅读时间为6.5分钟,而人工智能系统的平均阅读时间为2.73秒,远高于人工速度。

需要注意的是,论文指出,人工智能系统在区分普通肺炎和非肺炎方面要比放射科医生差一些,但是在更具挑战性的识别和分类中,人工智能系统的优势要更明显。

表格显示,在区分CAP和新冠肺炎时,人工智能系统的准确率为92%,而放射科医生的准确率为74%;在区分流感和新冠肺炎时,人工智能系统的准确率为88%,而放射科医生的准确率仅为54%,两者相差较大。

image.png

人工智能系统与放射科医生识别数据比较。*前述准确率数据主要依据表格中的“Any reader”类目得出。论文对“Any reader”的注释显示,在每一个病例的识别中,只要五位医生中有一位出现识别错误,则该案例就会被标记为人类识别错误。

“不同类型的肺炎具有高度的相似性,特别是在早期(相似性更明显);而且同一类型肺炎的不同阶段差异较大,CT筛查很难将新冠肺炎与其他肺炎进行鉴别,”论文作者、清华大学自动化系副教授冯建江在接受媒体采访时说,“因此,开发针对新冠肺炎的人工智能诊断算法是非常必要的。”

另外,冯建江表示人工智能诊断算法具有高重复性和易于大规模布置的优点,有潜力成为控制新冠肺炎传播的新工具,目前武汉部分医院已经用上相关的人工智能应用。

人工智能在新冠肺炎治疗中的应用

人工智能领域现已在应对新冠肺炎疫情上多处发力。据新华社报道,英国牛津大学领衔的一个科研团队正开发和测试一种人工智能算法,可辅助医生诊断和管理新冠患者病情。

这套算法可以帮助医生更快速地诊断病情,并且预判患者是否会出现病情恶化,比如哪些患者会出现呼吸困难、哪些患者会发展出长期性的肺功能问题。针对预判医护人员可以对患者进行更细致的医学观察,用有限的资源更高效的帮助有需要的患者。

另外,西班牙研究机构也开发出类似的人工智能模型。该模型可以预测新冠肺炎患者是否会出现严重的呼吸衰竭并需要进入重症监护室(ICU)接受治疗,并通过模型的预判对医疗资源进行分配。

原文链接:https://ai.51cto.com/art/202010/629203.htm
本文转载自51CTO,本文一切观点和机器智能技术圈子无关。
在线免费体验百种AI能力:【点此跳转】


群组直播宣传推广海报.jpg

目录
相关文章
|
16天前
|
机器学习/深度学习 数据采集 人工智能
AI赋能教育:深度学习在个性化学习系统中的应用
【10月更文挑战第26天】随着人工智能的发展,深度学习技术正逐步应用于教育领域,特别是个性化学习系统中。通过分析学生的学习数据,深度学习模型能够精准预测学生的学习表现,并为其推荐合适的学习资源和规划学习路径,从而提供更加高效、有趣和个性化的学习体验。
73 9
|
9天前
|
人工智能 知识图谱
成熟的AI要学会自己搞研究!MIT推出科研特工
MIT推出科研特工SciAgents,结合生成式AI、本体表示和多代理建模,实现科学发现的自动化。通过大规模知识图谱和多代理系统,SciAgents能探索新领域、识别复杂模式,加速新材料发现,展现跨学科创新潜力。
33 12
|
8天前
|
机器学习/深度学习 人工智能 算法
基于AI的性能优化技术研究
基于AI的性能优化技术研究
|
15天前
|
机器学习/深度学习 人工智能 搜索推荐
AI在医疗领域的革命:智能诊断系统的未来
在科技日新月异的今天,人工智能(AI)技术正逐渐渗透到我们生活的每一个角落,其中医疗领域尤为显著。本文将探讨AI在医疗诊断中的应用及其带来的变革,重点介绍智能诊断系统的发展现状与未来趋势。通过深入浅出的方式,我们将揭示AI如何改变传统医疗模式,提高诊断效率和准确性,最终造福广大患者。
|
21天前
|
人工智能 API 决策智能
swarm Agent框架入门指南:构建与编排多智能体系统的利器 | AI应用开发
Swarm是OpenAI在2024年10月12日宣布开源的一个实验性质的多智能体编排框架。其核心目标是让智能体之间的协调和执行变得更轻量级、更容易控制和测试。Swarm框架的主要特性包括轻量化、易于使用和高度可定制性,非常适合处理大量独立的功能和指令。【10月更文挑战第15天】
148 6
|
14天前
|
人工智能 自然语言处理 安全
AI技术在智能客服系统中的应用与挑战
【10月更文挑战第28天】本文将深入探讨人工智能(AI)技术在智能客服系统中的应用及其面临的挑战。我们将通过实例分析,了解AI如何改善客户服务体验,提高效率和降低成本。同时,我们也将关注AI在实际应用中可能遇到的问题,如语义理解、情感识别和数据安全等,并提出相应的解决方案。
|
16天前
|
安全 搜索推荐 机器学习/深度学习
AI赋能教育:深度学习在个性化学习系统中的应用
【10月更文挑战第26天】在人工智能的推动下,个性化学习系统逐渐成为教育领域的重要趋势。深度学习作为AI的核心技术,在构建个性化学习系统中发挥关键作用。本文探讨了深度学习在个性化推荐系统、智能辅导系统和学习行为分析中的应用,并提供了代码示例,展示了如何使用Keras构建模型预测学生对课程的兴趣。尽管面临数据隐私和模型可解释性等挑战,深度学习仍有望为教育带来更个性化和高效的学习体验。
44 0
|
24天前
|
人工智能 自然语言处理 机器人
对话阿里云CIO蒋林泉:AI时代,企业如何做好智能化系统建设?
10月18日, InfoQ《C 位面对面》栏目邀请到阿里云CIO及aliyun.com负责人蒋林泉(花名:雁杨),就AI时代企业CIO的角色转变、企业智能化转型路径、AI落地实践与人才培养等主题展开了讨论。
|
人工智能 达摩院 文字识别
医生的小助手,医疗AI赋能诊断新冠肺炎新方案!
阿里云视觉智能开放平台(vision.aliyun.com)携手达摩院联合出品 “新冠病毒肺炎辅助诊断”AI算法,它可以帮助医生快速进行疑似病例诊断。
医生的小助手,医疗AI赋能诊断新冠肺炎新方案!
|
4天前
|
机器学习/深度学习 人工智能 自然语言处理
当前AI大模型在软件开发中的创新应用与挑战
2024年,AI大模型在软件开发领域的应用正重塑传统流程,从自动化编码、智能协作到代码审查和测试,显著提升了开发效率和代码质量。然而,技术挑战、伦理安全及模型可解释性等问题仍需解决。未来,AI将继续推动软件开发向更高效、智能化方向发展。

热门文章

最新文章