为什么要使用CrewAI?
AI协作的力量不容小觑。CrewAI旨在让AI代理能够扮演角色、共享目标并作为一个协调的单元运作——就像一支训练有素的团队。无论您是在构建智能助手平台、自动化客户服务组合,还是多代理研究团队,CrewAI都提供了复杂多代理交互的基础。
开始
安装
pip install crewai
pip install crewai[tools]
代码
import os
from crewai import Agent, Task, Crew, Process
from crewai_tools import SerperDevTool
os.environ["OPENAI_API_KEY"] = "YOUR_API_KEY"
os.environ["SERPER_API_KEY"] = "Your Key" # serper.dev API key
# You can choose to use a local model through Ollama for example. See https://docs.crewai.com/how-to/LLM-Connections/ for more information.
# os.environ["OPENAI_API_BASE"] = 'http://localhost:11434/v1'
# os.environ["OPENAI_MODEL_NAME"] ='openhermes' # Adjust based on available model
# os.environ["OPENAI_API_KEY"] ='sk-111111111111111111111111111111111111111111111111'
# You can pass an optional llm attribute specifying what model you wanna use.
# It can be a local model through Ollama / LM Studio or a remote
# model like OpenAI, Mistral, Antrophic or others (https://docs.crewai.com/how-to/LLM-Connections/)
#
# import os
# os.environ['OPENAI_MODEL_NAME'] = 'gpt-3.5-turbo'
#
# OR
#
# from langchain_openai import ChatOpenAI
search_tool = SerperDevTool()
# Define your agents with roles and goals
researcher = Agent(
role='Senior Research Analyst',
goal='Uncover cutting-edge developments in AI and data science',
backstory="""You work at a leading tech think tank.
Your expertise lies in identifying emerging trends.
You have a knack for dissecting complex data and presenting actionable insights.""",
verbose=True,
allow_delegation=False,
# You can pass an optional llm attribute specifying what model you wanna use.
# llm=ChatOpenAI(model_name="gpt-3.5", temperature=0.7),
tools=[search_tool]
)
writer = Agent(
role='Tech Content Strategist',
goal='Craft compelling content on tech advancements',
backstory="""You are a renowned Content Strategist, known for your insightful and engaging articles.
You transform complex concepts into compelling narratives.""",
verbose=True,
allow_delegation=True
)
# Create tasks for your agents
task1 = Task(
description="""Conduct a comprehensive analysis of the latest advancements in AI in 2024.
Identify key trends, breakthrough technologies, and potential industry impacts.""",
expected_output="Full analysis report in bullet points",
agent=researcher
)
task2 = Task(
description="""Using the insights provided, develop an engaging blog
post that highlights the most significant AI advancements.
Your post should be informative yet accessible, catering to a tech-savvy audience.
Make it sound cool, avoid complex words so it doesn't sound like AI.""",
expected_output="Full blog post of at least 4 paragraphs",
agent=writer
)
# Instantiate your crew with a sequential process
crew = Crew(
agents=[researcher, writer],
tasks=[task1, task2],
verbose=2, # You can set it to 1 or 2 to different logging levels
process = Process.sequential
)
# Get your crew to work!
result = crew.kickoff()
print("######################")
print(result)
关键特性
- 基于角色的代理设计:根据特定角色、目标和工具定制代理。
- 自主代理间委托:代理可以自主地委托任务并在彼此之间进行询问,提高问题解决效率。
- 灵活的任务管理:使用可定制工具定义任务,并动态地将它们分配给代理。
- 流程驱动:目前仅支持顺序任务执行和层次化流程,但更复杂的流程(如共识和自主流程)正在开发中。
- 保存输出为文件:将单个任务的输出保存为文件,以便您稍后使用。
- 解析输出为Pydantic或Json:可以将单个任务的输出解析为Pydantic模型或Json,如果您愿意的话。
- 与开源模型兼容:使用Open AI或开源模型运行您的团队,请参阅将crewAI连接到LLMs页面,了解有关配置代理与模型连接的详细信息,甚至包括在本地运行的模型!
CrewAI与其它产品的比较
- Autogen:虽然Autogen在创建能够协同工作的对话代理方面做得很好,但它缺乏固有的流程概念。在Autogen中,协调代理之间的交互需要额外的编程,随着任务规模的增长,这可能会变得复杂和笨重。
- ChatDev:ChatDev将流程的概念引入到AI代理领域,但其实现相当僵硬。ChatDev的定制化有限,并不适合生产环境,这可能会阻碍现实世界应用中的可扩展性和灵活性。
CrewAI的优势:CrewAI是专为生产环境设计的。它提供了与Autogen对话代理相当的灵活性,以及ChatDev的结构化流程方法,但却没有那种僵硬。CrewAI的流程旨在动态和适应性强,无缝融入开发和生产工作流程中。
亮点
我们只需要写一些如上的代码,定义一些角色代理(agent)和任务(task),然后让CrewAI来协调他们,完成任务,达到目的。
这样我们就可以专注于任务本身,而不是代理之间的交互。这是一个非常有趣的概念,我很期待看到CrewAI在未来的发展中能够发挥出更大的作用。