[AI CrewAI] 你来当老板,组建AI团队,协作AI Agent完成任务

简介: [AI CrewAI] 你来当老板,组建AI团队,协作AI Agent完成任务

为什么要使用CrewAI?

AI协作的力量不容小觑。CrewAI旨在让AI代理能够扮演角色、共享目标并作为一个协调的单元运作——就像一支训练有素的团队。无论您是在构建智能助手平台、自动化客户服务组合,还是多代理研究团队,CrewAI都提供了复杂多代理交互的基础。

开始

安装

pip install crewai
pip install crewai[tools]

代码

import os
from crewai import Agent, Task, Crew, Process
from crewai_tools import SerperDevTool

os.environ["OPENAI_API_KEY"] = "YOUR_API_KEY"
os.environ["SERPER_API_KEY"] = "Your Key" # serper.dev API key

# You can choose to use a local model through Ollama for example. See https://docs.crewai.com/how-to/LLM-Connections/ for more information.

# os.environ["OPENAI_API_BASE"] = 'http://localhost:11434/v1'
# os.environ["OPENAI_MODEL_NAME"] ='openhermes'  # Adjust based on available model
# os.environ["OPENAI_API_KEY"] ='sk-111111111111111111111111111111111111111111111111'

# You can pass an optional llm attribute specifying what model you wanna use.
# It can be a local model through Ollama / LM Studio or a remote
# model like OpenAI, Mistral, Antrophic or others (https://docs.crewai.com/how-to/LLM-Connections/)
#
# import os
# os.environ['OPENAI_MODEL_NAME'] = 'gpt-3.5-turbo'
#
# OR
#
# from langchain_openai import ChatOpenAI

search_tool = SerperDevTool()

# Define your agents with roles and goals
researcher = Agent(
  role='Senior Research Analyst',
  goal='Uncover cutting-edge developments in AI and data science',
  backstory="""You work at a leading tech think tank.
  Your expertise lies in identifying emerging trends.
  You have a knack for dissecting complex data and presenting actionable insights.""",
  verbose=True,
  allow_delegation=False,
  # You can pass an optional llm attribute specifying what model you wanna use.
  # llm=ChatOpenAI(model_name="gpt-3.5", temperature=0.7),
  tools=[search_tool]
)
writer = Agent(
  role='Tech Content Strategist',
  goal='Craft compelling content on tech advancements',
  backstory="""You are a renowned Content Strategist, known for your insightful and engaging articles.
  You transform complex concepts into compelling narratives.""",
  verbose=True,
  allow_delegation=True
)

# Create tasks for your agents
task1 = Task(
  description="""Conduct a comprehensive analysis of the latest advancements in AI in 2024.
  Identify key trends, breakthrough technologies, and potential industry impacts.""",
  expected_output="Full analysis report in bullet points",
  agent=researcher
)

task2 = Task(
  description="""Using the insights provided, develop an engaging blog
  post that highlights the most significant AI advancements.
  Your post should be informative yet accessible, catering to a tech-savvy audience.
  Make it sound cool, avoid complex words so it doesn't sound like AI.""",
  expected_output="Full blog post of at least 4 paragraphs",
  agent=writer
)

# Instantiate your crew with a sequential process
crew = Crew(
  agents=[researcher, writer],
  tasks=[task1, task2],
  verbose=2, # You can set it to 1 or 2 to different logging levels
  process = Process.sequential
)

# Get your crew to work!
result = crew.kickoff()

print("######################")
print(result)

关键特性

  • 基于角色的代理设计:根据特定角色、目标和工具定制代理。
  • 自主代理间委托:代理可以自主地委托任务并在彼此之间进行询问,提高问题解决效率。
  • 灵活的任务管理:使用可定制工具定义任务,并动态地将它们分配给代理。
  • 流程驱动:目前仅支持顺序任务执行和层次化流程,但更复杂的流程(如共识和自主流程)正在开发中。
  • 保存输出为文件:将单个任务的输出保存为文件,以便您稍后使用。
  • 解析输出为Pydantic或Json:可以将单个任务的输出解析为Pydantic模型或Json,如果您愿意的话。
  • 与开源模型兼容:使用Open AI或开源模型运行您的团队,请参阅将crewAI连接到LLMs页面,了解有关配置代理与模型连接的详细信息,甚至包括在本地运行的模型!

crewAI-mindmap

CrewAI与其它产品的比较

  • Autogen:虽然Autogen在创建能够协同工作的对话代理方面做得很好,但它缺乏固有的流程概念。在Autogen中,协调代理之间的交互需要额外的编程,随着任务规模的增长,这可能会变得复杂和笨重。
  • ChatDev:ChatDev将流程的概念引入到AI代理领域,但其实现相当僵硬。ChatDev的定制化有限,并不适合生产环境,这可能会阻碍现实世界应用中的可扩展性和灵活性。

CrewAI的优势:CrewAI是专为生产环境设计的。它提供了与Autogen对话代理相当的灵活性,以及ChatDev的结构化流程方法,但却没有那种僵硬。CrewAI的流程旨在动态和适应性强,无缝融入开发和生产工作流程中。

亮点

我们只需要写一些如上的代码,定义一些角色代理(agent)和任务(task),然后让CrewAI来协调他们,完成任务,达到目的。

这样我们就可以专注于任务本身,而不是代理之间的交互。这是一个非常有趣的概念,我很期待看到CrewAI在未来的发展中能够发挥出更大的作用。


相关文章
|
2月前
|
人工智能 JavaScript 测试技术
Cradle:颠覆AI Agent 操作本地软件,AI驱动的通用计算机控制框架,如何让基础模型像人一样操作你的电脑?
Cradle 是由 BAAI‑Agents 团队开源的通用计算机控制(GCC)多模态 AI Agent 框架,具备视觉输入、键鼠操作输出、自主学习与反思能力,可操作各类本地软件及游戏,实现任务自动化与复杂逻辑执行。
203 6
|
3月前
|
人工智能 弹性计算 API
再不玩通义 VACE 模型你就过时了!一个模型搞定所有视频任务
介绍通义的开源模型在 ecs 或 acs 场景如何一键部署和使用,如何解决不同视频生成场景的问题。
|
3月前
|
人工智能 数据可视化 程序员
程序员必收藏!Github 167000+ star 的自主AI agent,全自动AI助手,全面覆盖开发效率场景
AutoGPT 是基于 GPT-4 的开源自主 AI 智能代理,全面覆盖开发效率场景。支持任务自动拆解、多轮反馈、插件扩展与记忆管理,具备持续执行能力,适合自动化测试、CI/CD、Web 数据抓取等任务。GitHub 超 176K Star,是当前最热门的 AI Agent 开源项目之一,提供 CLI 与 GUI 双界面,助力开发者提升工作效率。
372 1
|
20天前
|
人工智能 自然语言处理 测试技术
有没有可能不微调也能让大模型准确完成指定任务?(少样本学习)
对于我这种正在从0到1构建AI产品的一人公司来说,Few Shots学习的最大价值在于:用最少的资源获得最大的效果。我不需要大量的标注数据,不需要复杂的模型训练,只需要精心设计几个示例,就能让大模型快速理解我的业务场景。
145 43
|
21天前
|
人工智能 安全 开发工具
不只是写代码:Qwen Code 如何规划、执行并验证软件工程任务
本文以阿里推出的 CLI 工具 Qwen Code 为例,深入剖析其如何通过精细化的 Prompt 设计(角色定义、核心规范、任务管理、工作流控制),赋予大模型自主规划、编码、测试与验证的能力。
|
22天前
|
存储 人工智能 安全
企业级 AI Agent 开发指南:基于函数计算 FC Sandbox 方案实现类 Chat Coding AI Agent
通过 Sandbox 与 Serverless 的深度融合,AI Agent 不再是“黑盒”实验,而是可被企业精准掌控的生产力工具。这种架构不仅适配当前 AI Agent 的动态交互特性,更为未来多模态 Agent、跨系统协作等复杂场景提供了可复用的技术底座。若您的企业正面临 AI Agent 规模化落地的挑战,不妨从 Sandbox 架构入手,结合函数计算 FC 的能力,快速验证并构建安全、高效、可扩展的 AI 应用系统。
|
1月前
|
存储 人工智能 Serverless
企业级 AI Agent 开发指南:基于函数计算 FC Sandbox 方案实现类 Chat Coding AI Agent
本文深入解析AI Agent系统架构,特别是以Sandbox为核心的落地实践。聚焦泛Chat模式下AI应用的挑战与解决方案,涵盖会话亲和性、隔离性、存储机制、会话恢复、资源弹性等关键技术点,阿里云函数计算(FC)为 AI Agent 系统在企业中的落地实践提供实际解决方案,展示了如何高效、安全地构建可扩展的 AI 应用系统。
|
2月前
|
数据采集 人工智能 定位技术
分享一个开源的MCP工具使用的AI Agent 支持常用的AI搜索/地图/金融/浏览器等工具
介绍一个开源可用的 MCP Tool Use 通用工具使用的 AI Agent (GitHub: https://github.com/AI-Agent-Hub/mcp-marketplace ,Web App https://agent.deepnlp.org/agent/mcp_tool_use,支持大模型从Open MCP Marketplace (http://deepnlp.org/store/ai-agent/mcp-server) 的1w+ 的 MCP Server的描述和 Tool Schema 里面,根据用户问题 query 和 工具 Tool描述的 相关性,选择出来可以满足

热门文章

最新文章