阿里云飞天大数据产品价值解读——《一站式高质量搜索开放搜索》

本文涉及的产品
智能开放搜索 OpenSearch行业算法版,1GB 20LCU 1个月
OpenSearch LLM智能问答版免费试用套餐,存储1GB首月+计算资源100CU
简介: 随着研发技术的发展,开发者对内容、工具、平台等的一站式需求愈加强烈。为了构建更加高效和高质量的一站式大数据搜索产品,阿里云将一站式搜索服务的核心着眼于实现高质量以及开放式搜索。本次直播将由阿里云智能-高级产品专家染天为大家全面解析OpenSearch核心能力、搜索体验、价值评估并分享典型案例

演讲嘉宾简介:阿里云智能高级产品专家——吴世龙(染天)
以下内容根据演讲视频以及PPT整理而成。
观看回放:https://yq.aliyun.com/live/43343

本次分享主要围绕以下三个方面:
一、如何评估搜索质量、体验与业务价值
二、OpenSearch背景与核心能力介绍
三、典型案例


一、如何评估搜索质量、体验与业务价值

1.搜索-无处不在
生活中多种不同场景需要进行搜索,在企业内部产品中也需要使用多种搜索功能,方便用户快捷地获取企业相关商品、服务、内容等信息。搜索在不同的企业业务中的角色可能有所不同。如下图所示,搜索在电商行业是十分重要的业务流量转化入口,在其他领域也必不可少。
搜索是用户获取信息的基础手段与能力,如果搜索不好用,用户信任度必会降低。如果搜索在某业务场景中使用不多,建议衡量业务的全站流量结构。
image.png
2. 评估搜索质量、体验与业务价值
六成左右客户不清楚如何评估搜索质量、体验与业务价值,那么引出以下问题。

  • 搜索的业务价值驱动力是什么?搜索在企业内部的业务价值驱动一般依靠被动的Bad case、KPI或业务需求。依靠Bad case驱动,搜索结果具有随机性,不固定时间地点场合,搜索体验差。KPI指标判断,容易片面和不知所以然。依靠业务需求指业务方或运营指明将某些搜索结果置于前排,意味着结果排序相关性势必会完全依赖于业务方经验而无法客观的保障用户的体验与业务转化,不具备可控性。以上三种业务价值驱动方式都存在较大问题。
    目前许多企业的做法是根据上述所谓的内部搜索业务价值驱动力,做召回、排序、业务需求以及扩展搜索历史等功能。
  • 如何衡量?主观?客观?如果明确了搜索的业务价值驱动力,如何衡量驱动效果,即业务价值?具有客观的体系化衡量手段才有可能实现客观的判断。
    下图所列举为一套以淘宝内部为典型的搜索上线流程。首先需要有监控/评估搜索用户体验的方法,周期性评测用户体验。通过监控/评估明确迭代/专项。在上线前做一些A/B Test或灰度测试,如果没有问题可全量上线,并监控线上效果。例如翻页率下降,说明用户以往搜索10页才能找到的内容现在1、2页就可以找到,搜索体验提升。

该链路是主动监控、评估搜索业务价值的,好的驱动力应该是高效的体系化的持续化的实现交付价值。
那么如何衡量搜索业务价值?该链路源头是监控/评估能力,需要有体系化、专业的报表与评估服务。报表是客观性数据,只能反映果而不能体现因,评估服务是人工主观评估服务。监控/评估取代了所谓Bad case、KPI、业务需求,更加体系化地衡量搜索体验。

image.png

如下图所示,OpenSearch报表评估提供5大维度的30+指标。报表只能体现整体结果,而局部效果的评估可以根据大量指标从不同视角得出不同结论。五大维度分为流量指标、点击类指标、用户分析类指标、Query分析类指标、成交指标,核心指标由其提炼而来。
以往每天上班第一件事是查看关键指标,如发现可能存在问题,需要检查连带影响,确保报表各项核心指标正常后才会展开其他工作。因此该体系化、专业的报表与评估服务不仅带给客户一种技术能力,更使客户能够在平台上完整落地、驱动搜索业务。

image.png

  • 如何高效、可持续、体系化地交付搜索价值?搜索的相关市场、场景、用户、文化一直处于变化中,明确搜索业务价值驱动力、衡量方式后,如何高效、可持续、体系化地交付搜索价值?
    与一般开源不同,OpenSearch提供的不是需要客户自行拼搭开发的零散工具,而是一套完整服务,一切皆为提升业务价值、体现大家的专业能力。OpenSearch服务主要有以下四个特点。第一,免运维,客户只需要提供数据并配置满足自身业务诉求的策略。第二,开箱即用,只需提供数据与配置策略,操作便捷。第三,一站式,提供搜索核心功能、扩展功能。第四,高搜索质量。

下图所示为搜索上线流程,创建应用、上传数据并进行简单调试后即可发布上线。若过程顺利半天即可完成。
image.png

二、OpenSearch背景与核心能力介绍

OpenSearch是阿里巴巴自研的搜索引擎,过去一直支持并服务阿里内部应用,经过千锤百炼才沉淀到可以赋能市场上其他企业。
image.png
搜索的核心是做召回、排序、业务需求以及功能扩展,投入重、依赖多、周期长,一般企业难以投入大规模人力与资源。因此开发性能与体验优秀的搜索引擎并非易事。
image.png
召回核心模块为分析器与查询分析。中文博大精深,易生歧义,分词效果至关重要。召回内置多种分析器,分析语言意图。查询分析提供同义词、纠错、词权重、实体识别、停用词分析等必备功能。
排序方面支持二次排序,是大数据量召回的有效解决方式。还支持类目预测、人气模型,支持表达式以及Cava排序定制。
根据业务需求需要支持混排、打散、词典管理等功能实现。混排指在搜索召回结果中根据业务需求相应展示视频、文字、图片等不同媒体类型结果。例如在淘宝搜索结果中,打散指品牌、价格等打散展示。
扩展即功能性扩展,如A/B Test、搜索框下拉提示、热搜&底纹(默认搜索词)、飘红、Debug工具等。
召回、排序、业务、扩展都是为了服务客户,使客户能以最小成本、最短时间交付高质量业务价值而提供的能力。
1.分析器
分析器是影响搜索效果的基础模块,不同业务场景需要使用不同分析器,需要用户结合自身业务场景自行选择。目前OpenSearch集成了12种分析器供用户选择,用户也可上传自己的分词词条个性化定制分析器。
image.png

下图所示为阿里OpenSearch电商分析器与开源IK分析器对比数据,可见OpenSearch分析器的分词效果相对优于IK开源分析器。该对比随机抽取100个电商类Query,下图列举部分结果。例如925银耳饰,开源IK分析器分词有“银耳”一项,OpenSearch电商分词理解显然更优。
image.png
2.类目预测
用户搜索意图可分为精搜、泛搜,类目预测即预测用户搜索某一Query时目标类目的结果。类目预测并非依靠个人体感,而需要符合市场需求,根据行为数据尽可能快速满足用户需求。
如下图所示,使用类目预测前在淘宝搜索光明,可能出现米、面、奶等多种相关商品。而根据用户点击行为数据,100个用户搜索光明,绝大多数点击的商品是光明牛奶,意味着用户搜索光明通常是搜索光明牛奶,因此使用类目预测后前排推荐商品变化为光明牛奶。
类目预测也可使用纯文本方式。

案例——双面胶:多数时候搜索双面胶指办公用品,然而一段时间内电视剧《双面胶》很热,出现了许多相关周边产品。那么用户在该阶段搜索双面胶想要的商品或许会发生变化,可通过用户行为数据进行类目预测。
案例——播、海贼王、柯南:“播”是一个服装品牌,多数时候需要召回的内容为该品牌服装。海贼王、柯南等Query,需要根据市场需求,通过类目预测提供更合适的结果。
image.png
3.人气模型
淘宝早期搜索结果排序方式非常简单,宝贝发布后上架试7天,剩余下架时间越短排序越靠前,所有卖家都有相同的机会获得流量,对卖家、买家都相对公平。然而该模式无法将价值最大化,并不经济。
因此淘宝很早发布了人气模型,尽可能与市场趋势匹配,使用户更加满意,从而转化为最大价值。用户体验好,对优质卖家、商品也更公平,是当前默认模型。
image.png
4.热搜&底纹
image.png

三、典型案例

1.召回
下图所示站点是以UGC内容为主的论坛。由于站内搜索用户地域表达与文化习惯差异大,易生歧义,导致搜索体验差。因此该类搜索场景要求搜索引擎具备较强的语义理解能力,根据搜索和文档的真实语义进行智能匹配。
词权重分析:如下图所示,搜索问题为“胎停有什么症状”,基于优秀的召回质量,通过词权重分析能够给出较好的结果排序。
拼写纠错、同义词扩大召回:如下图所示,由于用户方言习惯等问题,搜索关键词时将“剖腹产”误输入为“抛妇产”,通过拼写纠错等功能,仍然可以正确识别用户意图,提供相关内容。
**客户评价-1:简单无门槛,连不懂技术的产品经理都可以使用OpenSearch对业务进行迭代,大大缩短了项目的迭代周期。
客户评价-2:提高效率,目前技术团队没有专职优化搜索的技术人员,只是根据项目需求做临时优化即可,省力省心。**
image.png
2.技术类内容社区
某国内最大的中文IT内容社区,涉及众多业务场景,由于是技术类内容社区,需要提供强大、优秀的搜索服务。
该社区花一年时间基于开源自建搜索服务,效果不佳。因此该社区试行OpenSearch。
下图所示为基于开源自建搜索服务与基于OpenSearch服务的搜索效果对比。搜索同一关键词Win10重装,可见基于OpenSearch服务的搜索语义理解更优,提供的搜索结果相关性更高。
由于该社区搜索词专业垂直度高,通用分词不足以支持,需要自定义词典,并结合了阿里NLP通用Query智能分析+人气模型。
效果:对比基于开源自建的搜索服务CTR提升80%+,对比友商CTR提升3%。
image.png


如果你想与更多开发者们进行交流、了解最前沿的搜索与推荐技术,可以钉钉扫码加入社群~

image.png

【开放搜索】新用户活动:阿里云实名认证用户享1个月免费试用~https://www.aliyun.com/product/opensearch

相关实践学习
基于MaxCompute的热门话题分析
Apsara Clouder大数据专项技能认证配套课程:基于MaxCompute的热门话题分析
目录
相关文章
|
2月前
|
分布式计算 DataWorks 大数据
阿里云ODPS的个人收获思考
在接触阿里云ODPS过程中,我深入了解了MaxCompute和DataWorks等产品。MaxCompute强大的数据处理能力显著提升了我的工作效率,而DataWorks的一站式开发与治理平台简化了数据流程管理。通过实践,我不仅掌握了高效的SQL编写与数据挖掘技巧,还提升了团队协作意识与大数据思维,为未来挑战打下了坚实基础。
|
2月前
|
数据采集 人工智能 大数据
10倍处理效率提升!阿里云大数据AI平台发布智能驾驶数据预处理解决方案
阿里云大数据AI平台推出智能驾驶数据预处理解决方案,助力车企构建高效稳定的数据处理流程。相比自建方案,数据包处理效率提升10倍以上,推理任务提速超1倍,产能翻番,显著提高自动驾驶模型产出效率。该方案已服务80%以上中国车企,支持多模态数据处理与百万级任务调度,全面赋能智驾技术落地。
177 0
|
5月前
|
数据采集 机器学习/深度学习 人工智能
面向 MoE 和推理模型时代:阿里云大数据 AI 产品升级发布
2025 AI 势能大会上,阿里云大数据 AI 平台持续创新,贴合 MoE 架构、Reasoning Model 、 Agentic RAG、MCP 等新趋势,带来计算范式变革。多款大数据及 AI 产品重磅升级,助力企业客户高效地构建 AI 模型并落地 AI 应用。
|
2月前
|
人工智能 分布式计算 DataWorks
多模态数据处理新趋势:阿里云ODPS技术栈深度解析与未来展望
阿里云ODPS技术栈通过MaxCompute、Object Table与MaxFrame等核心组件,实现了多模态数据的高效处理与智能分析。该架构支持结构化与非结构化数据的统一管理,并深度融合AI能力,显著降低了分布式计算门槛,推动企业数字化转型。未来,其在智慧城市、数字医疗、智能制造等领域具有广泛应用前景。
268 6
多模态数据处理新趋势:阿里云ODPS技术栈深度解析与未来展望
|
存储 机器学习/深度学习 人工智能
阿里云ODPS:在AI浪潮之巅,铸就下一代智能数据根基
在智能爆炸时代,ODPS正从传统数据平台进化为“AI操作系统”。面对千亿参数模型与实时决策挑战,ODPS通过流批一体架构、多模态处理、智能资源调度等技术创新,大幅提升效率与智能化水平。从自动驾驶到医疗联合建模,从数字孪生到低代码AI开发,ODPS正重塑企业数据生产力,助力全球客户在算力洪流中抢占先机。
110 0
|
2月前
|
数据采集 分布式计算 DataWorks
ODPS在某公共数据项目上的实践
本项目基于公共数据定义及ODPS与DataWorks技术,构建一体化智能化数据平台,涵盖数据目录、归集、治理、共享与开放六大目标。通过十大子系统实现全流程管理,强化数据安全与流通,提升业务效率与决策能力,助力数字化改革。
78 4
|
2月前
|
分布式计算 DataWorks 数据处理
在数据浪潮中前行:记录一次我与ODPS的实践、思考与展望
本文详细介绍了在 AI 时代背景下,如何利用阿里云 ODPS 平台(尤其是 MaxCompute)进行分布式多模态数据处理的实践过程。内容涵盖技术架构解析、完整操作流程、实际部署步骤以及未来发展方向,同时结合 CSDN 博文深入探讨了多模态数据处理的技术挑战与创新路径,为企业提供高效、低成本的大规模数据处理方案。
174 3
|
2月前
|
SQL 人工智能 分布式计算
ODPS:数据浪潮中的成长与突围
本文讲述了作者在大数据浪潮中,通过引入阿里云ODPS体系(包括MaxCompute、DataWorks、Hologres)解决数据处理瓶颈、实现业务突破与个人成长的故事。从被海量数据困扰到构建“离线+实时”数据架构,ODPS不仅提升了数据处理效率,更推动了技术能力与业务影响力的双重跃迁。

相关产品

  • 智能开放搜索 OpenSearch