手淘再推新利器Holmes:一站式智能化异常检测平台

简介: 指标监控关乎稳定性,但随着数据量的增加、指标的复杂周期性和模式变化的动态性,基于阈值/同比环比的规则难以适用,而且复杂的领域知识导致为每条指标配置相应的规则费时费力,无法应用在大规模数据监控上。在监控的有效性方面,传统的规则报警无法智能识别季节性,也经常受到噪声/抖动数据的干扰而导致误报,固定的规则以及阈值更无法进行提前预警。

滚动.gif

作者|董福铭(吾铭)、黄俊(豆豆)
编辑|橙子君
出品|阿里巴巴新零售淘系技术

指标监控关乎稳定性,但随着数据量的增加、指标的复杂周期性和模式变化的动态性,基于阈值/同比环比的规则难以适用,而且复杂的领域知识导致为每条指标配置相应的规则费时费力,无法应用在大规模数据监控上。在监控的有效性方面,传统的规则报警无法智能识别季节性,也经常受到噪声/抖动数据的干扰而导致误报,固定的规则以及阈值更无法进行提前预警。

前言

在上面的背景下,淘系技术质量团队打造了一款基于AI算法的异常检测平台,Holmes是一款智能化、轻量级、易接入、可扩展的异常检测平台,使用基于AI的异常检测算法,替代传统的规则监控方案。解决规则告警系统准确率低、时效性低、规则配置复杂与耗费人力等诸多问题。

Holmes目前已经在阿里内进行开放,覆盖淘宝、千牛、优酷、钉钉、淘宝直播等多个应用,核心指标量200+,整体准确率在90%以上,算法调用量高达1000万余次,有效进行故障的提前预警20余次。

▐ 平台理念

Holmes通过AI算法对业务指标进行检测和预测,从而实现智能化报警,弥补了规则监控的不足,减少误报和漏报情况。提供一站式的异常检测服务,满足时序数据的实时检测,提供多种接入方式,利用机器学习和深度学习方式,定制化学习模型,有效提升报警覆盖率,以智能化方式进行稳定性的监控和保障。

特点:

  • 学习历史数据,分析当前指标曲线趋势是否异常
  • 基于以往数据,进行预测未来指标走势

优势:

  • 算法检测代替规则检测
  • 告警准确率高
  • 更早发现异常情况
  • 可适应业务发展带来的趋势变化

解决的异常场景:
image.png

▐ 系统架构
image.png

配置化流程

通过4步简单配置进行指标的接入和算法选择,轻松开启智能异常检测。
image.png

▐ 算法概览

Holmes融合了多种检测、预测的时序算法,检测异常响应速度快,预测数据走势准,二者的完美结合,奠定了异常检测的基础能力,同时平台也支持扩展算法的能力,以适应新增场景的特殊需求。

检测算法:

✎ Statistic

In statistics, the 68-95-99.7 rule is a shorthand used to remember the percentage of valuesthat lie within a band around the mean in a normal distribution with a width of two, four andsix standard deviations, respectively; more accurately, 68.27%, 95.45% and 99.73% of the valueslie within one, two and three standard deviations of the mean, respectively.

image.png

✎ Ewma

In statistical quality control, the EWMA chart (or exponentially weighted moving average chart)is a type of control chart used to monitor either variables or attributes-type data using the monitored businessor industrial process's entire history of output. While other control charts treat rational subgroups of samplesindividually, the EWMA chart tracks the exponentially-weighted moving average of all prior sample means.

image.png

✎ Polynomial

In statistics, polynomial regression is a form of regression analysis in which the relationshipbetween the independent variable x and the dependent variable y is modelled as an nth degree polynomial in x.

image.png

✎ IsolationForest

The IsolationForest 'isolates' observations by randomly selecting a feature and thenrandomly selecting a split value between the maximum and minimum values of the selected feature.

✎ XGBoost

XGBoost is an optimized distributed gradient boosting library designed to be highly efficient, flexible and portable. It implements machine learning algorithms under the Gradient Boosting framework. XGBoost provides a parallel tree boosting (also known as GBDT, GBM) that solve many data science problems in a fast and accurate way. The same code runs on major distributed environment (Hadoop, SGE, MPI) and can solve problems beyond billions of examples.

预测算法:

✎ Tensorflow-LSTM

Long Short-Term Memory layer - Hochreiter 1997.预测效果图:

image.png

✎ Facebook-prophet

Prophet is a procedure for forecasting time series data based on an additive model where non-linear trends are fit with yearly, weekly, and daily seasonality, plus holiday effects. It works best with time series that have strong seasonal effects and several seasons of historical data. Prophet is robust to missing data and shifts in the trend, and typically handles outliers well.

实践效果

目前Holmes异常检测平台已经在集团内部开放接入和运行,支持集团内常用数据源。平台运行几个月以来,帮助接入业务方的开发测试同学构建智能监控体系,减少繁琐的规则配置,有效提高了线上质量监控的覆盖率。今年618大促期间,Holmes的准确性方面也进一步得到验证,有效保障了大促的稳定性质量。

覆盖应用:淘宝、千牛、优酷、钉钉、淘宝直播、咸鱼等
接入指标:核心业务指标 200+
提前预警:有效提前预警线上问题 20+
算法调用量:累计1000万+

报警示例

image.png

实践案例1:

A客户端新版本放量期间, 由于客户端请求传参问题导致服务端返回大量空返回错误,Holmes 进行了有效检测到异常,相关同学收到报警及时中止放量并修复问题。然而传统规则监控因未达到阈值没有预警。

image.png

实践案例2:

在618大促压测期间,由于B业务订单数据量持续下降(缓慢下跌),Holmes检测到持续异常信息,预测数据下跌风险,早于传统规则监控90分钟提前报警,有效避免了线上故障。

image.png

算法检测效果

image.png

未来展望

Holmes异常检测平台是淘系技术质量团队打造,在智能化测试领域的一次实践,未来我们希望利用AI算法实现业务全方位智能化监控和问题定位。覆盖更多的数据类型、打造通用的算法模型、更优越的算法指标。同时我们也在全链路监控排查、智能舆情处理等多方面进行探索,期待后续跟大家分享。

淘系技术质量团队

负责保障整个手淘、天猫主战的业务质量,这里有丰富业务场景和技术挑战,我们将持续建设及完善这个那个淘系稳定性、提升用户体验。

如果您有兴趣可讲简历发至:fuming.dfm@alibaba-inc.com,期待您的加入!

关注「淘系技术」微信公众号,一个有温度有内容的技术社区~

image.png

相关文章
|
4月前
|
存储 弹性计算 DataWorks
云端开发与数据分析的强强联合
通过这次方案的搭建和使用,我更加确信阿里云产品组合是企业数字化转型的强大助力。我鼓励大家积极探索和尝试这些服务,以发掘它们在实际业务中的潜力和价值。我深刻体会到了阿里云产品组合的强大能力和灵活性。它们不仅帮助我们解决了实际问题,还为未来的发展提供了坚实的基础。我强烈推荐其他企业和开发者尝试这样的产品组合,以提升开发效率和数据处理能力。
122 35
|
5月前
|
机器学习/深度学习 人工智能 算法
「我在淘天做技术」迈步从头越-阿里妈妈广告智能决策技术的演进之路
随着智能化营销产品和机器学习的发展,阿里妈妈将深度学习和强化学习等AI技术越来越多地应用到广告智能决策领域。本文将以阿里妈妈广告智能决策技术的演进为例,分享我们工作和思考。
|
监控 网络协议 UED
《云上社交行业技术服务白皮书》——第四章 云上社交保障与服务案例——4.1 社交平台可靠性——4.1.1行业质量监控指标
《云上社交行业技术服务白皮书》——第四章 云上社交保障与服务案例——4.1 社交平台可靠性——4.1.1行业质量监控指标
334 0
|
编解码 监控 算法
《云上社交行业技术服务白皮书》——第四章 云上社交保障与服务案例——4.1 社交平台可靠性——4.1.2 质量指标衡量标准(下)
《云上社交行业技术服务白皮书》——第四章 云上社交保障与服务案例——4.1 社交平台可靠性——4.1.2 质量指标衡量标准(下)
378 0
|
SQL 消息中间件 监控
快手实时数仓保障体系研发实践
快手实时计算数据团队技术专家李天朔在 FFA 2021 的演讲。
快手实时数仓保障体系研发实践
|
机器学习/深度学习 人工智能 监控
作为今年业务流程领域最热的技术赛道,国产流程挖掘都有哪些特点与优势?
以艺赛旗iS-RPM为例,聊聊国产流程挖掘产品的特性与优势。
531 0
作为今年业务流程领域最热的技术赛道,国产流程挖掘都有哪些特点与优势?
|
存储 Web App开发 SQL
移动应用监控运营方案,一站式解决南瓜电影性能监控与用户行为分析需求
阿里云日志服务SLS团队与UC iTrace(岳鹰)团队合作,将itrace SDK采集能力和数据分析能力与日志服务SLS进行整合,为南瓜电影提供了一站式采集业务埋点数据的能力,以及高稳定、高性能的数据处理能力。
463 0
移动应用监控运营方案,一站式解决南瓜电影性能监控与用户行为分析需求
|
消息中间件 存储 SQL
2021 年网易云音乐实时计算平台发展和挑战
从一个日常运维问题出发,带领大家了解云音乐实时计算平台的一些工作进展和未来规划。
2021 年网易云音乐实时计算平台发展和挑战
|
安全
能力小访谈| 支付宝开放能力全方位助力白鲸鱼营销与内容安全
首期“能力小访谈”邀请到「白鲸鱼」来分享一些在使用支付宝能力方面的经验。
1442 12
能力小访谈| 支付宝开放能力全方位助力白鲸鱼营销与内容安全
|
缓存 监控 数据可视化
闲鱼如何建设技术舆情治理体系 (多图多代码)
从日志、监控、性能检测几个方面建设了有日志可查、有数据可依的排查体系
3671 0
闲鱼如何建设技术舆情治理体系 (多图多代码)
下一篇
无影云桌面