如何通过AI 全面提升运维效率?选型宝分享AIOps实战案例

简介: 前言运维,是企业IT最基础的工作,也是痛点、槽点最多的工作。海量的数据、频繁的报警、艰难的排障、无情的投诉,足以让运维工程师们感到崩溃和绝望……Gartner在ITOA (IT Operations Analytics IT运营分析)的基础上,提出了AIOps的概念。

前言

运维,是企业IT最基础的工作,也是痛点、槽点最多的工作。海量的数据、频繁的报警、艰难的排障、无情的投诉,足以让运维工程师们感到崩溃和绝望……

Gartner在ITOA (IT Operations Analytics IT运营分析)的基础上,提出了AIOps的概念。当时,AIOps的含义是“基于算法的IT运维(Algorithmic IT Operations)”。随着AI热潮的到来,Gartner也顺时应势,在2017年的一份报告中,将AIOps重新定义为“Artificial Intelligence for IT Operations”,也就是现在大家都在谈论的“智能运维”。

AIOps概念的提出,是尝试把机器学习、深度学习等人工智能算法应用于IT运维工具和业务系统所采集的大型数据集,并尝试模拟人类行为(如发现、判断、响应)的智能化运维管理平台。

AIOps希望让运维管理具备算法和机器学习的能力,通过持续学习,使运维更加智能化,并将运维人员从纷繁复杂的日常工作中解放出来。

两年多过去了,AIOps到底是依然停留在理念和愿景层面,还是变成了可以落地实施的解决方案?

带着这些问题,选型宝直播采访了国内AIOps技术前沿探索者,Gartner AIOps Sample Vendors——云智慧的副总裁李诚先生。

以下就是李诚先生在直播节目中为大家分享的部分精彩内容,希望能对您有所启发和帮助。

1
AIOps的概念、应用场景和用户价值

李维良:AIOps可以应用在哪些运维的场景下?

李诚:AIOps的应用场景非常广泛,能够切中传统运维中的大量痛点,比如:异常检测、故障预测、关联分析、根因分析、告警抑制、故障自动处理等等。

李维良:云智慧怎么理解AIOps的概念?

李诚:在云智慧的理念中,IT即是业务,因此,我们将AIOps理解为“智能业务运维”,并在2016年发布了智能业务运维平台DOCP(Digital Operation Central Platform)。DOCP包含了大数据运维、业务运维、智能运维等解决方案,旨在帮助用户全面提升IT运营效率,强化IT的业务价值。云智慧的智能业务运维将Gartner的AIOps理念与中国的IT运维实践相结合,更加场景化,更接地气。

李维良:过去两年里,云智慧的AIOps的方案应用在哪些行业?带来了哪些价值?

李诚:在过去的两年里,云智慧智能业务运维解决方案已经在银行、保险、证券、航空、医药、制造、消费品等多个领域的大型企业的业务场景中成功落地。

智能业务运维解决方案通过运维的自动化、智能化和IT团队赋能,大幅提升了运维工作的效率。同时,智能业务运维使运维的方式更加科学,减少了对个人经验的过度依赖,克服了人工运维的不稳定性,从而大幅提高了运维工作的质量。智能业务运维可以将运维人员从巨量、繁琐、重复性的劳动中解放出来,使他们能够将更多的精力投入到IT和业务的创新中。

鉴于云智慧在AIOps领域的贡献和努力,Gartner在新近发布的《中国ICT行业技术成熟度曲线,2018》报告中,将云智慧提名为AIOps领域的Sample Vendors。

2
AIOps实战案例分享

李维良:是否可以结合一些行业案例,做一些具体的阐述?

李诚:
应用场景1:异常监测

我们的一家做航空行业的客户,在业务开展过程中,每天600个业务应用系统(包括售票系统、退票系统、进仓系统、订单查询系统等)产生海量日志数据(2个小时产生7TB/10亿条的增量数据)。用户希望能够对海量数据进行实时分析,及时发现业务波动并进行预警。这家客户的需求,具有数据量大、指标复杂度高、实时性要求高(1分钟之内完成数据的采集、分析、呈现)等特点。

云智慧从2016年开始服务这家客户,并为其建立了业务运营实时监控分析平台,实现了业务异常预警、业务基线预警、运营监控分析、日志实时查询等目标。

通过分布式大数据处理、内存计算等技术,我们为该用户实现了10万条/秒的并发数据实时分析处理和秒级告警处理。通过深度学习、时序预测等算法的应用,使预测的准确率得到大幅提升,预测结果与实际情况的偏差仅有3%。

应用场景2 :关联分析

我们的一家金融行业客户是数字化步伐比较快的大型金融机构,在国内拥有3个数据中心,600个业务应用系统,上万台物理设备,系统彼此之间调用关系复杂,并且部分核心业务之间具有强依赖关系。

这些应用系统每天产生海量日志数据和告警信息,对日志报文数据的处理分析时效性差,效率低,IT的整体运维效率已经成为制约企业数字化发展的障碍。

针对这家企业的情况,云智慧基于过去多年在监控宝、透视宝、压测宝等产品上积累的技术和经验,为其建立起了业务与IT的统一视图,厘清了各类指标数据、日志数据和事件数据的内在关联关系,并进行了统一的建模和分析。

在此基础上,云智慧的智能业务运维平台为这家客户实现了关键业务指标和体验指标的预测和异常检测,提升了业务运营和IT管理效率,初步实现了IT运营的数字化和智能化。

金融管控中心大屏效果展示

应用场景3 :智能告警

当IT故障发生时,多个系统会同时发出告警,这为运维人员带来巨大的困扰,使故障处理的效率大幅降低,这种现象就是“告警风暴”。告警风暴是IT运维中的常见场景,也是AIOps的典型应用之一。

我们的一家药企客户,现有近10个面向各类客户的线上产品和办公系统,随着业务的快速发展,他们在全国范围内建设了3个数据中心,拥有上万台物理设备。系统彼此之间调用关系复杂,并且部分核心业务之间具有强依赖关系。

运维团队每天会接收近万条的故障告警通知消息,人均接收量在100-200条,并且漏报、错报情况频发。故障发生时,需要各部门协调才能定位解决问题,平均解决时间需要1个小时以上。用户目前有5套监控系统,并且每个系统会独立的产生告警通知,当出现大规模故障时,运维人员会同时收到来自各个系统的大量告警通知,对正常的工作造成了极大困扰。

针对这家企业的情况,我们为其部署了智能告警平台,利用 restAPI 、agnet 采集等方式,对接各个监控系统,将各个系统的告警消息通过智能告警平台进行统一汇聚和整合,让运维人员可以在一个平台处理所有故障。

智能告警平台正式部署后,我们成功将告警量压缩了93%,即每100条报警数据,可以压缩到7条。同时,系统还可以对报警信息进行科学分类,并及时发送给正确的人。

智能告警平台大幅缩短了整个运维团队的平均响应时间(MTTA),从过去的平均25分23秒降低到了4分16秒。通过动态基线等技术,可以将错报、漏报率分别从22.4%降低到了8.5%;9.3%降低到了3.8%。

在此基础上,我们最近还为用户实现了“故障预测”功能,帮助用户提前了解可能发生的IT问题,最大限度降低IT故障对业务的影响。

3
部署方式与落地方法论

李维良:AIOps落地,需要怎样的方法?

李诚:
智能运维的落地也不是一蹴而就的,它需要经历三个阶段:

第一阶段是大数据运维,构建统一监控平台,实现IT资源的统一管控。利用大数据的手段,采集、分析基础设施、网络、日志等IT监控数据,通过海量IT数据的实时处理分析,消除数据孤岛,实现统一的告警,提升运维管理效率。

第二阶段是业务运维,全面提升用户体验和业务系统健康,实现业务和IT的双向驱动。用户体验和业务效能是数字化业务的两大核心指标,通过IT和业务双向驱动的业务运维,能够帮助企业发现IT故障对业务造成的影响有多大、IT如何更好地支撑业务转型、如何最大程度地降低业务损失。

第三阶段是智能运维,构建智能化的IT运营管控体系,持续提升业务价值。通过智能告警、异常监测、根因分析、自动处置、故障预测,极大提升IT运维效率、保障业务连续、减少业务损失。

这其中,大数据平台是基础,是整个智能业务运维体系的基座。企业用户可先打好大数据基础、并在此之上,逐步增加应用模块,采用积累经验、小步快跑的方式,让AIOps在自己的企业成功落地。

李维良:云智慧智能业务运维平台支持怎样的部署方式?

李诚:云智慧智能业务运维平台采用混合云架构,支持本地私有化部署和基于公有云的SaaS部署。做为国内第一家实现AIOps跨行业场景化应用的业务运维解决方案提供商,云智慧可以为用户提供从大数据平台,到智能运维模块、再到专家与实施的全方位服务,满足企业的基础需求和个性化需求,促进企业数字化业务的发展。

相关实践学习
基于MaxCompute的热门话题分析
Apsara Clouder大数据专项技能认证配套课程:基于MaxCompute的热门话题分析
目录
相关文章
|
4月前
|
机器学习/深度学习 人工智能 缓存
AI运维不再是玄学:教你用AI提前预测系统故障,少熬几次夜!
AI运维不再是玄学:教你用AI提前预测系统故障,少熬几次夜!
560 13
|
4月前
|
人工智能 运维 算法
AI来了,运维不慌:教你用人工智能把团队管理提速三倍!
AI来了,运维不慌:教你用人工智能把团队管理提速三倍!
539 8
|
4月前
|
人工智能 监控 安全
员工使用第三方AI办公的风险与解决方案:从三星案例看AI的数据防泄漏
生成式AI提升办公效率,也带来数据泄露风险。三星、迪士尼案例揭示敏感信息外泄隐患。AI-FOCUS团队建议构建“流式网关+DLP”防护体系,实现分级管控、全程审计,平衡安全与创新。
|
4月前
|
人工智能 缓存 运维
【智造】AI应用实战:6个agent搞定复杂指令和工具膨胀
本文介绍联调造数场景下的AI应用演进:从单Agent模式到多Agent协同的架构升级。针对复杂指令执行不准、响应慢等问题,通过意图识别、工具引擎、推理执行等多Agent分工协作,结合工程化手段提升准确性与效率,并分享了关键设计思路与实践心得。
794 20
【智造】AI应用实战:6个agent搞定复杂指令和工具膨胀
|
4月前
|
存储 人工智能 搜索推荐
LangGraph 记忆系统实战:反馈循环 + 动态 Prompt 让 AI 持续学习
本文介绍基于LangGraph构建的双层记忆系统,通过短期与长期记忆协同,实现AI代理的持续学习。短期记忆管理会话内上下文,长期记忆跨会话存储用户偏好与决策,结合人机协作反馈循环,动态更新提示词,使代理具备个性化响应与行为进化能力。
816 10
LangGraph 记忆系统实战:反馈循环 + 动态 Prompt 让 AI 持续学习
|
4月前
|
人工智能 IDE 开发工具
从6人日到1人日:一次AI驱动的客户端需求开发实战
从6人日到1人日:一次AI驱动的客户端需求开发实战
从6人日到1人日:一次AI驱动的客户端需求开发实战
|
4月前
|
人工智能 运维 监控
MCP 打通AI大模型与 Zabbix,运维新时代来了!
管志勇,高级软件开发工程师、OceanBase认证专家,深耕软件开发多年,专注Zabbix运维开发与数据可视化。本文介绍其如何通过MCP协议实现大模型与Zabbix的智能联动,打造高效运维新范式。
721 14
|
4月前
|
数据采集 人工智能 JSON
Prompt 工程实战:如何让 AI 生成高质量的 aiohttp 异步爬虫代码
Prompt 工程实战:如何让 AI 生成高质量的 aiohttp 异步爬虫代码
|
4月前
|
传感器 人工智能 运维
拔俗AI巡检系统:让设备“会说话”,让隐患“早发现”,打造更安全高效的智能运维
AI巡检系统融合AI、物联网与大数据,实现设备7×24小时智能监测,自动识别隐患并预警,支持预测性维护,提升巡检效率5倍以上,准确率超95%。广泛应用于工厂、电力、交通等领域,推动运维从“被动响应”转向“主动预防”,降本增效,保障安全,助力数字化转型。(238字)
673 0

热门文章

最新文章