如何通过AI 全面提升运维效率?选型宝分享AIOps实战案例

本文涉及的产品
云原生大数据计算服务 MaxCompute,5000CU*H 100GB 3个月
云原生大数据计算服务MaxCompute,500CU*H 100GB 3个月
日志服务 SLS,月写入数据量 50GB 1个月
简介: 前言运维,是企业IT最基础的工作,也是痛点、槽点最多的工作。海量的数据、频繁的报警、艰难的排障、无情的投诉,足以让运维工程师们感到崩溃和绝望……Gartner在ITOA (IT Operations Analytics IT运营分析)的基础上,提出了AIOps的概念。

前言

运维,是企业IT最基础的工作,也是痛点、槽点最多的工作。海量的数据、频繁的报警、艰难的排障、无情的投诉,足以让运维工程师们感到崩溃和绝望……

Gartner在ITOA (IT Operations Analytics IT运营分析)的基础上,提出了AIOps的概念。当时,AIOps的含义是“基于算法的IT运维(Algorithmic IT Operations)”。随着AI热潮的到来,Gartner也顺时应势,在2017年的一份报告中,将AIOps重新定义为“Artificial Intelligence for IT Operations”,也就是现在大家都在谈论的“智能运维”。

AIOps概念的提出,是尝试把机器学习、深度学习等人工智能算法应用于IT运维工具和业务系统所采集的大型数据集,并尝试模拟人类行为(如发现、判断、响应)的智能化运维管理平台。

AIOps希望让运维管理具备算法和机器学习的能力,通过持续学习,使运维更加智能化,并将运维人员从纷繁复杂的日常工作中解放出来。

两年多过去了,AIOps到底是依然停留在理念和愿景层面,还是变成了可以落地实施的解决方案?

带着这些问题,选型宝直播采访了国内AIOps技术前沿探索者,Gartner AIOps Sample Vendors——云智慧的副总裁李诚先生。

以下就是李诚先生在直播节目中为大家分享的部分精彩内容,希望能对您有所启发和帮助。

1
AIOps的概念、应用场景和用户价值

李维良:AIOps可以应用在哪些运维的场景下?

李诚:AIOps的应用场景非常广泛,能够切中传统运维中的大量痛点,比如:异常检测、故障预测、关联分析、根因分析、告警抑制、故障自动处理等等。

李维良:云智慧怎么理解AIOps的概念?

李诚:在云智慧的理念中,IT即是业务,因此,我们将AIOps理解为“智能业务运维”,并在2016年发布了智能业务运维平台DOCP(Digital Operation Central Platform)。DOCP包含了大数据运维、业务运维、智能运维等解决方案,旨在帮助用户全面提升IT运营效率,强化IT的业务价值。云智慧的智能业务运维将Gartner的AIOps理念与中国的IT运维实践相结合,更加场景化,更接地气。

李维良:过去两年里,云智慧的AIOps的方案应用在哪些行业?带来了哪些价值?

李诚:在过去的两年里,云智慧智能业务运维解决方案已经在银行、保险、证券、航空、医药、制造、消费品等多个领域的大型企业的业务场景中成功落地。

智能业务运维解决方案通过运维的自动化、智能化和IT团队赋能,大幅提升了运维工作的效率。同时,智能业务运维使运维的方式更加科学,减少了对个人经验的过度依赖,克服了人工运维的不稳定性,从而大幅提高了运维工作的质量。智能业务运维可以将运维人员从巨量、繁琐、重复性的劳动中解放出来,使他们能够将更多的精力投入到IT和业务的创新中。

鉴于云智慧在AIOps领域的贡献和努力,Gartner在新近发布的《中国ICT行业技术成熟度曲线,2018》报告中,将云智慧提名为AIOps领域的Sample Vendors。

2
AIOps实战案例分享

李维良:是否可以结合一些行业案例,做一些具体的阐述?

李诚:
应用场景1:异常监测

我们的一家做航空行业的客户,在业务开展过程中,每天600个业务应用系统(包括售票系统、退票系统、进仓系统、订单查询系统等)产生海量日志数据(2个小时产生7TB/10亿条的增量数据)。用户希望能够对海量数据进行实时分析,及时发现业务波动并进行预警。这家客户的需求,具有数据量大、指标复杂度高、实时性要求高(1分钟之内完成数据的采集、分析、呈现)等特点。

云智慧从2016年开始服务这家客户,并为其建立了业务运营实时监控分析平台,实现了业务异常预警、业务基线预警、运营监控分析、日志实时查询等目标。

通过分布式大数据处理、内存计算等技术,我们为该用户实现了10万条/秒的并发数据实时分析处理和秒级告警处理。通过深度学习、时序预测等算法的应用,使预测的准确率得到大幅提升,预测结果与实际情况的偏差仅有3%。

应用场景2 :关联分析

我们的一家金融行业客户是数字化步伐比较快的大型金融机构,在国内拥有3个数据中心,600个业务应用系统,上万台物理设备,系统彼此之间调用关系复杂,并且部分核心业务之间具有强依赖关系。

这些应用系统每天产生海量日志数据和告警信息,对日志报文数据的处理分析时效性差,效率低,IT的整体运维效率已经成为制约企业数字化发展的障碍。

针对这家企业的情况,云智慧基于过去多年在监控宝、透视宝、压测宝等产品上积累的技术和经验,为其建立起了业务与IT的统一视图,厘清了各类指标数据、日志数据和事件数据的内在关联关系,并进行了统一的建模和分析。

在此基础上,云智慧的智能业务运维平台为这家客户实现了关键业务指标和体验指标的预测和异常检测,提升了业务运营和IT管理效率,初步实现了IT运营的数字化和智能化。

金融管控中心大屏效果展示

应用场景3 :智能告警

当IT故障发生时,多个系统会同时发出告警,这为运维人员带来巨大的困扰,使故障处理的效率大幅降低,这种现象就是“告警风暴”。告警风暴是IT运维中的常见场景,也是AIOps的典型应用之一。

我们的一家药企客户,现有近10个面向各类客户的线上产品和办公系统,随着业务的快速发展,他们在全国范围内建设了3个数据中心,拥有上万台物理设备。系统彼此之间调用关系复杂,并且部分核心业务之间具有强依赖关系。

运维团队每天会接收近万条的故障告警通知消息,人均接收量在100-200条,并且漏报、错报情况频发。故障发生时,需要各部门协调才能定位解决问题,平均解决时间需要1个小时以上。用户目前有5套监控系统,并且每个系统会独立的产生告警通知,当出现大规模故障时,运维人员会同时收到来自各个系统的大量告警通知,对正常的工作造成了极大困扰。

针对这家企业的情况,我们为其部署了智能告警平台,利用 restAPI 、agnet 采集等方式,对接各个监控系统,将各个系统的告警消息通过智能告警平台进行统一汇聚和整合,让运维人员可以在一个平台处理所有故障。

智能告警平台正式部署后,我们成功将告警量压缩了93%,即每100条报警数据,可以压缩到7条。同时,系统还可以对报警信息进行科学分类,并及时发送给正确的人。

智能告警平台大幅缩短了整个运维团队的平均响应时间(MTTA),从过去的平均25分23秒降低到了4分16秒。通过动态基线等技术,可以将错报、漏报率分别从22.4%降低到了8.5%;9.3%降低到了3.8%。

在此基础上,我们最近还为用户实现了“故障预测”功能,帮助用户提前了解可能发生的IT问题,最大限度降低IT故障对业务的影响。

3
部署方式与落地方法论

李维良:AIOps落地,需要怎样的方法?

李诚:
智能运维的落地也不是一蹴而就的,它需要经历三个阶段:

第一阶段是大数据运维,构建统一监控平台,实现IT资源的统一管控。利用大数据的手段,采集、分析基础设施、网络、日志等IT监控数据,通过海量IT数据的实时处理分析,消除数据孤岛,实现统一的告警,提升运维管理效率。

第二阶段是业务运维,全面提升用户体验和业务系统健康,实现业务和IT的双向驱动。用户体验和业务效能是数字化业务的两大核心指标,通过IT和业务双向驱动的业务运维,能够帮助企业发现IT故障对业务造成的影响有多大、IT如何更好地支撑业务转型、如何最大程度地降低业务损失。

第三阶段是智能运维,构建智能化的IT运营管控体系,持续提升业务价值。通过智能告警、异常监测、根因分析、自动处置、故障预测,极大提升IT运维效率、保障业务连续、减少业务损失。

这其中,大数据平台是基础,是整个智能业务运维体系的基座。企业用户可先打好大数据基础、并在此之上,逐步增加应用模块,采用积累经验、小步快跑的方式,让AIOps在自己的企业成功落地。

李维良:云智慧智能业务运维平台支持怎样的部署方式?

李诚:云智慧智能业务运维平台采用混合云架构,支持本地私有化部署和基于公有云的SaaS部署。做为国内第一家实现AIOps跨行业场景化应用的业务运维解决方案提供商,云智慧可以为用户提供从大数据平台,到智能运维模块、再到专家与实施的全方位服务,满足企业的基础需求和个性化需求,促进企业数字化业务的发展。

相关实践学习
基于MaxCompute的热门话题分析
本实验围绕社交用户发布的文章做了详尽的分析,通过分析能得到用户群体年龄分布,性别分布,地理位置分布,以及热门话题的热度。
SaaS 模式云数据仓库必修课
本课程由阿里云开发者社区和阿里云大数据团队共同出品,是SaaS模式云原生数据仓库领导者MaxCompute核心课程。本课程由阿里云资深产品和技术专家们从概念到方法,从场景到实践,体系化的将阿里巴巴飞天大数据平台10多年的经过验证的方法与实践深入浅出的讲给开发者们。帮助大数据开发者快速了解并掌握SaaS模式的云原生的数据仓库,助力开发者学习了解先进的技术栈,并能在实际业务中敏捷的进行大数据分析,赋能企业业务。 通过本课程可以了解SaaS模式云原生数据仓库领导者MaxCompute核心功能及典型适用场景,可应用MaxCompute实现数仓搭建,快速进行大数据分析。适合大数据工程师、大数据分析师 大量数据需要处理、存储和管理,需要搭建数据仓库?学它! 没有足够人员和经验来运维大数据平台,不想自建IDC买机器,需要免运维的大数据平台?会SQL就等于会大数据?学它! 想知道大数据用得对不对,想用更少的钱得到持续演进的数仓能力?获得极致弹性的计算资源和更好的性能,以及持续保护数据安全的生产环境?学它! 想要获得灵活的分析能力,快速洞察数据规律特征?想要兼得数据湖的灵活性与数据仓库的成长性?学它! 出品人:阿里云大数据产品及研发团队专家 产品 MaxCompute 官网 https://www.aliyun.com/product/odps 
目录
相关文章
|
16天前
|
Prometheus 运维 监控
智能运维实战:Prometheus与Grafana的监控与告警体系
【10月更文挑战第26天】Prometheus与Grafana是智能运维中的强大组合,前者是开源的系统监控和警报工具,后者是数据可视化平台。Prometheus具备时间序列数据库、多维数据模型、PromQL查询语言等特性,而Grafana支持多数据源、丰富的可视化选项和告警功能。两者结合可实现实时监控、灵活告警和高度定制化的仪表板,广泛应用于服务器、应用和数据库的监控。
90 3
|
5天前
|
机器学习/深度学习 数据采集 人工智能
运维新纪元:AIOps引领智能运维变革####
本文探讨了人工智能与运维管理深度融合的前沿趋势——AIOps(Artificial Intelligence for Operations),它通过机器学习、大数据分析等技术手段,为现代IT运维体系带来前所未有的智能化升级。不同于传统依赖人力的运维模式,AIOps能够实现故障预测、自动化修复、性能优化等功能,大幅提升系统稳定性和运营效率。文章将深入分析AIOps的核心价值、关键技术组件、实施路径以及面临的挑战,旨在为读者揭示这一新兴领域如何重塑运维行业的未来。 ####
|
6天前
|
运维 Ubuntu 应用服务中间件
自动化运维工具Ansible的实战应用
【10月更文挑战第36天】在现代IT基础设施管理中,自动化运维已成为提升效率、减少人为错误的关键手段。本文通过介绍Ansible这一流行的自动化工具,旨在揭示其在简化日常运维任务中的实际应用价值。文章将围绕Ansible的核心概念、安装配置以及具体使用案例展开,帮助读者构建起自动化运维的初步认识,并激发对更深入内容的学习兴趣。
26 4
|
4天前
|
机器学习/深度学习 数据采集 人工智能
智能运维:从自动化到AIOps的演进与实践####
本文探讨了智能运维(AIOps)的兴起背景、核心组件及其在现代IT运维中的应用。通过对比传统运维模式,阐述了AIOps如何利用机器学习、大数据分析等技术,实现故障预测、根因分析、自动化修复等功能,从而提升系统稳定性和运维效率。文章还深入分析了实施AIOps面临的挑战与解决方案,并展望了其未来发展趋势。 ####
|
8天前
|
消息中间件 运维 UED
消息队列运维实战:攻克消息丢失、重复与积压难题
消息队列(MQ)作为分布式系统中的核心组件,承担着解耦、异步处理和流量削峰等功能。然而,在实际应用中,消息丢失、重复和积压等问题时有发生,严重影响系统的稳定性和数据的一致性。本文将深入探讨这些问题的成因及其解决方案,帮助您在运维过程中有效应对这些挑战。
15 1
|
10天前
|
机器学习/深度学习 人工智能 运维
智能化运维:从传统到AIOps的转型之路####
本文探讨了智能化运维(AIOps)的兴起背景、核心价值及其对现代IT运维模式的深刻影响。通过分析传统运维面临的挑战,阐述了AIOps如何利用大数据、机器学习技术实现故障预测、自动化处理与决策支持,进而提升运维效率和服务质量。文章还概述了实施AIOps的关键步骤与面临的主要挑战,为组织向智能化运维转型提供参考路径。 ####
|
14天前
|
机器学习/深度学习 人工智能 运维
智能运维:AIOps在大型系统运维中的实践与挑战
【10月更文挑战第28天】随着云计算、大数据和人工智能的发展,AIOps(人工智能运维)应运而生,旨在通过算法和机器学习提高运维效率和质量。本文探讨了AIOps在大型系统运维中的实践与挑战,包括数据质量、模型选择和团队协作等方面,并通过一个异常检测案例展示了其应用。尽管面临挑战,AIOps仍有望成为未来运维的重要方向。
46 5
|
11天前
|
存储 人工智能 文字识别
AI与OCR:数字档案馆图像扫描与文字识别技术实现与项目案例
本文介绍了纸质档案数字化的技术流程,包括高精度扫描、图像预处理、自动边界检测与切割、文字与图片分离抽取、档案识别与文本提取,以及识别结果的自动保存。通过去噪、增强对比度、校正倾斜等预处理技术,提高图像质量,确保OCR识别的准确性。平台还支持多字体识别、批量处理和结构化存储,实现了高效、准确的档案数字化。具体应用案例显示,该技术在江西省某地质资料档案馆中显著提升了档案管理的效率和质量。
|
18天前
|
机器学习/深度学习 人工智能 运维
智能化运维:AI驱动下的IT运维革命###
本文探讨了人工智能(AI)技术在IT运维领域的创新应用,强调其在提升效率、预防故障及优化资源配置中的关键作用,揭示了智能运维的新趋势。 ###
|
16天前
|
机器学习/深度学习 运维 监控
智能运维未来:AIOps在预测性维护与故障排查中的潜力
【10月更文挑战第26天】随着数字化转型的深入,企业对IT系统的依赖日益增加。传统的运维方式已无法满足需求,智能运维(AIOps)应运而生。AIOps通过集成和分析多源数据,利用机器学习算法实现系统状态的实时监控和预测性维护,显著提升了运维效率和质量。 示例代码展示了如何使用Python和scikit-learn实现故障预测模型,进一步说明了AIOps的应用价值。
61 5