scikit-learn的5个秘密武器

简介: 虽然scikit-learn在机器学习领域很重要,但是很多人并不知道利用这个库中的一些强大的功能。本文将介绍scikit-learn中5个最有用的5个隐藏的瑰宝,充分利用这些秘密武器将有效提高你的机器学习处理的效率!

虽然scikit-learn在机器学习领域很重要,但是很多人并不知道利用这个库中的一些强大的功能。本文将介绍scikit-learn中5个最有用的5个隐藏的瑰宝,充分利用这些秘密武器将有效提高你的机器学习处理的效率!

1、数据集生成器

Scikit-learn有很多数据集生成器,可以用来生成各种复杂度和维度的人工数据集。

例如,make_blobs函数可以创建包含很多数据样本、聚类中心、维度的“blobs”或数据聚类。可视化以后可以清晰看出样本的分布:

在这里插入图片描述

Scikit-learn其实提供了很多数据集创建函数:

在这里插入图片描述

  • make_moons(n_samples=100, noise=0.1)
  • make_circles(n_samples=100, noise=0.05)
  • make_regression(n_samples=100, n_features=1, noise=15)
  • make_classification(n_samples=100)

2、流水线/Pipeline

流水线可以将不同的方法组合为单一模型,在自然语言处理(NLP)应用中这一点非常重要。可以通过组合多个模型的方式来创建流水线,数据将依次流过聚合模型中的各环节。流水线有标准的拟合与预测能力,这使得训练过程得到很好的组织。

很多对象都可以整合进流水线:

  • 缺失值处理器/Imputers:如果你的数据中包含缺失的数据,可以试试Simple Imputer或KNN Imputer
  • 编码器/Encoders:如果你的数据不是二进制分类,你可能需要使用一个Label Encoder或者One-Hot Encoder
  • NLP矢量化处理器/NLP Vectorizers:如果你在处理NLP数据,那么可以使用Count Vectorizer、TD-IDF Vectorize或者Hash Vectorizer
  • 数值变换:可以尝试标准化处理器、min-max缩放等等

3、网格搜索/GridSearchCV

在机器学习中的一个常见任务就是找出模型的正确参数集。通常你可以基于对任务的理解猜测参数的取值,或者编程找出最优集合。sklearn内置了函数GridSearchCV可以自动找出最优参数集。

GridSearchCV对象需要两个参数:首先是要训练的模型对象,例如下面示例中的SVM分类器,第二个则是一个描述参数模型的字典,字典的每一个键对应模型的一个参数,键值则是可能取值的列表。

from sklearn import svm, datasets
from sklearn.model_selection import GridSearchCV

iris = datasets.load_iris()
parameters = {'kernel':('linear', 'rbf'), 'C':[1, 10]}
svc = svm.SVC()

clf = GridSearchCV(svc, parameters)
clf.fit(iris.data, iris.target)
clf.best_params_ #[Output]: {'C': 1, 'kernel': 'linear'}

网格搜索完成后,best_params属性中就记录了表现最好的模型参数。

4、验证曲线/validation_curve

要可视化一个参数对模型性能的影响,可以使用sklearn的validation_curve。这个函数需要一些参数 —— 模型、要调整的参数、参数的取值范围、运行的次数等。validation_curve类似于单变量的网格搜索,可以帮助你更好的可视化单个参数变化的效果。

from sklearn.model_selection import validation_curve
train_scores, valid_scores = validation_curve(model,
                                              X, y, 
                                              "max_depth", #model parameter to be adjusted
                                              range(2,7), #values of the parameter
                                              cv=10) #number of folds for k-fold evaluation

train_scores value: #Rows: number of parameter values (4), Columns: each of the values for the folds (10)
array([[0.96296296, 0.95555556, 0.96296296, 0.97037037, 0.95555556,
        0.95555556, 0.95555556, 0.96296296, 0.97037037, 0.96296296],
       [0.97037037, 0.97037037, 0.97777778, 0.98518519, 0.97037037,
        0.97037037, 0.97037037, 0.97037037, 0.97777778, 0.97777778],
       [0.99259259, 0.99259259, 0.99259259, 1.        , 0.99259259,
        0.99259259, 0.99259259, 1.        , 0.99259259, 0.99259259],
       [1.        , 1.        , 1.        , 1.        , 1.        ,
        1.        , 1.        , 1.        , 0.99259259, 1.        ],
       [1.        , 1.        , 1.        , 1.        , 1.        ,
        1.        , 1.        , 1.        , 1.        , 1.        ]])

validation_curve输出的结构是一个元组 —— 一个表示训练得分,另一个表示测试得分。数组中的每个元素表示k次运行中的一个参数值。

当绘制结果后,参数和精确度之间的关系就很清晰了:

import matplotlib.pyplot as plt
import seaborn as sns

sns.set_palette('RdYlGn')
sns.set_style('whitegrid')

params = range(2,10)
for index,param in enumerate(train_scores):
    sns.lineplot(range(10),param,label=params[index])
    
plt.title("Tree Depth Impact on Training Accuracy")
plt.xlabel("CV-Fold")
plt.ylabel("Training Accuracy")
plt.show()

在这里插入图片描述

这让我们可以可视化树的深度对准确度的影响。从上图中可以看到树深度为5或6时,模型的性能相当好,但是再继续增加深度就会导致过拟合。

K折交叉验证

交叉验证是一种准确度高于train_test_split的方法,并且通常需要更少的代码。在传统的训练/测试集拆分中,数据样本被随机的分配到训练集和测试集,通常比例为7:3~8:2,在训练集上训练模型,然后在测试集上评估模型,以确保模型真正泛化而非单纯的记忆。

然而由于每次分割是随机的,分割10次将产生10个不同的测试结果。

为了解决这个问题,K折交叉验证将数据拆分为K类,在其中K-1个子集上训练模型,在剩下的1个子集上测试模型。重复这一过程直至测试子集最终覆盖完整的数据集,那么就得到了完整并且可信的准确度指标。这种方法更好的一点是,不需要跟踪x-train、x-test、y-train和y-test变量。交叉验证唯一的缺点是需要更多时间 —— 不过要得到更好的结果总是要多付出一点成本。


原文链接:scikit-learn中的5个隐藏的瑰宝 — 汇智网

目录
相关文章
|
7月前
|
机器学习/深度学习 数据采集 数据挖掘
Python 数据分析入门教程:Numpy、Pandas、Matplotlib和Scikit-Learn详解
Python 数据分析入门教程:Numpy、Pandas、Matplotlib和Scikit-Learn详解
142 0
|
7月前
|
机器学习/深度学习 数据采集 算法
深入Scikit-learn:掌握Python最强大的机器学习库
深入Scikit-learn:掌握Python最强大的机器学习库
78 0
|
6天前
|
机器学习/深度学习 数据采集 供应链
从数据到决策:scikit-learn在业务分析中的应用
【4月更文挑战第17天】本文探讨了scikit-learn在业务分析中的应用,包括数据预处理、分类、回归和聚类模型的构建,以及模型评估与优化。通过使用scikit-learn,企业能有效处理数据、预测趋势、客户细分并制定决策,从而提升经营效率和市场策略。随着机器学习的发展,scikit-learn在业务分析领域的潜力将持续释放,创造更多价值。
|
6天前
|
机器学习/深度学习
模型选择与调优:scikit-learn中的交叉验证与网格搜索
【4月更文挑战第17天】在机器学习中,模型选择和调优至关重要,scikit-learn提供了交叉验证和网格搜索工具。交叉验证(如k折、留一法和分层k折)用于评估模型性能和参数调优。网格搜索(如GridSearchCV和RandomizedSearchCV)遍历或随机选择参数组合以找到最优设置。通过实例展示了如何使用GridSearchCV对随机森林模型进行调优,强调了理解问题和数据的重要性。
|
6天前
|
机器学习/深度学习 算法
scikit-learn在回归问题中的应用与优化
【4月更文挑战第17天】本文探讨了scikit-learn在回归问题中的应用,介绍了线性回归、岭回归、SVR和决策树回归等算法,并提出优化策略,包括特征选择、超参数调优、交叉验证和集成学习。通过实践案例展示如何处理房价预测问题,强调了根据问题特点选择合适方法的重要性。
|
6天前
|
数据采集 机器学习/深度学习 算法
scikit-learn中的数据预处理:从清洗到转换
【4月更文挑战第17天】在机器学习中,scikit-learn是用于数据预处理的强大Python库,涵盖数据清洗和转换。数据清洗涉及处理缺失值(如使用SimpleImputer和IterativeImputer填充)和异常值,以及分类数据的编码(如标签编码和独热编码)。数据转换包括特征缩放(如StandardScaler和MinMaxScaler)和特征选择(过滤、包装和嵌入方法)。这些工具能提升数据质量,优化模型性能,但需根据具体问题选择合适方法。
|
6天前
|
机器学习/深度学习 数据采集 算法
scikit-learn入门指南:从基础到实践
【4月更文挑战第17天】这篇指南介绍了scikit-learn,一个Python数据分析和机器学习的重要库。内容涵盖安装、数据加载与预处理、模型训练(如KNN分类器)、评估、调参优化及高级应用,如降维和聚类。通过实例展示了scikit-learn在分类任务中的使用,强调其在数据科学中的重要性。要深入了解,可参考官方文档和实践案例。
|
7天前
|
机器学习/深度学习 算法 Python
python在Scikit-learn中用决策树和随机森林预测NBA获胜者
python在Scikit-learn中用决策树和随机森林预测NBA获胜者
19 0
|
14天前
|
机器学习/深度学习 人工智能 算法
机器学习基础:使用Python和Scikit-learn入门
【4月更文挑战第9天】本文介绍了使用Python和Scikit-learn进行机器学习的基础知识和入门实践。首先,简述了机器学习的基本概念和类型。接着,展示了如何安装Python和Scikit-learn,加载与处理数据,选择模型进行训练,以及评估模型性能。通过本文,读者可了解机器学习入门步骤,并借助Python和Scikit-learn开始实践。
|
1月前
|
机器学习/深度学习 人工智能 算法
使用Python和Scikit-learn库来实现一个基本的K-最近邻(KNN)分类器
使用Python和Scikit-learn库来实现一个基本的K-最近邻(KNN)分类器