Python内存管理机制-《源码解析》

本文涉及的产品
云解析 DNS,旗舰版 1个月
公共DNS(含HTTPDNS解析),每月1000万次HTTP解析
全局流量管理 GTM,标准版 1个月
简介:

Python内存管理机制-《源码解析》

Python 内存管理分层架构
/* An object allocator for Python.

Here is an introduction to the layers of the Python memory architecture,
showing where the object allocator is actually used (layer +2), It is
called for every object allocation and deallocation (PyObject_New/Del),
unless the object-specific allocators implement a proprietary allocation
scheme (ex.: ints use a simple free list). This is also the place where
the cyclic garbage collector operates selectively on container objects.

Object-specific allocators
_____   ______   ______       ________

[ int ] [ dict ] [ list ] ... [ string ] Python core |
+3 | <----- Object-specific memory -----> | <-- Non-object memory --> |

_______________________________       |                           |

[ Python's object allocator ] | |
+2 | ####### Object memory ####### | <------ Internal buffers ------> |

______________________________________________________________    |

[ Python's raw memory allocator (PyMem_ API) ] |
+1 | <----- Python memory (under PyMem manager's control) ------> | |

__________________________________________________________________

[ Underlying general-purpose allocator (ex: C library malloc) ]
0 | <------ Virtual memory allocated for the python process -------> |

=========================================================================

_______________________________________________________________________

[ OS-specific Virtual Memory Manager (VMM) ]
-1 | <--- Kernel dynamic storage allocation & management (page-based) ---> |

__________________________________   __________________________________

[ ] [ ]
-2 | <-- Physical memory: ROM/RAM --> | | <-- Secondary storage (swap) --> |

*/
reference:Objects/obmalloc.c

layer 3: Object-specific memory(int/dict/list/string....)

    python 实现并维护
    用户对Python对象的直接操作,主要是各类特定对象的缓冲池机制,缓冲池,比如小整数对象池等等

layer 2: Python's object allocator

    实现了创建/销毁python对象的接口(PyObject_New/Del),涉及对象参数/引用计数等

layer 1: Python's raw memory allocator (PyMem_ API)

    包装了第0层的内存管理接口,提供同一个raw memory管理接口
    封装的原因:不同操作系统C行为不一致,保证可移植性,相同语义相同行为
    

layer 0: Underlying general-purpose allocator (ex: C library malloc)

    操作系统提供的内存管理接口,由操作系统实现并管理,Python不能干涉这一层的行为,大内存 分配调用malloc函数分配内存

Python 内存分配策略之-block,pool
Python中有分为大内存和小内存,512K为分界线

大内存使用系统malloc进行分配
小内存使用python内存池进行分配

  1. 如果要分配的内存空间大于 SMALL_REQUEST_THRESHOLD bytes(512 bytes), 将直接使用layer 1的内存分配接口进行分配
  2. 否则, 使用不同的block来满足分配需求
    申请一块大小28字节的内存, 实际从内存中划到32字节的一个block (从size class index为3的pool里面划出)

block
内存块block 是python内存的最小单位

  • For small requests we have the following table:
    *

    • Request in bytes Size of allocated block Size class idx

    • 1-8 8 0
    • 9-16 16 1
    • 17-24 24 2
    • 25-32 32 3
    • 33-40 40 4
    • 41-48 48 5
    • 49-56 56 6
    • 57-64 64 7
    • 65-72 72 8
    • ... ... ...
    • 497-504 504 62
    • 505-512 512 63
      *
    • 0, SMALL_REQUEST_THRESHOLD + 1 and up: routed to the underlying
    • allocator.
      */

pool
pool内存池,管理block, 一个pool管理着一堆固定大小的内存块,在Python中, 一个pool的大小通常为一个系统内存页. 4kB

define SYSTEM_PAGE_SIZE (4 * 1024)

define SYSTEM_PAGE_SIZE_MASK (SYSTEM_PAGE_SIZE - 1)

define POOL_SIZE SYSTEM_PAGE_SIZE / must be 2^N /

define POOL_SIZE_MASK SYSTEM_PAGE_SIZE_MASK

pool的4kB内存 = pool_header + block集合(N多大小一样的block)

typedef uint8_t block;

/ Pool for small blocks. /
struct pool_header {

union { block *_padding;
        uint count; } ref;          /* number of allocated blocks    */
block *freeblock;                   /* pool's free list head         */
struct pool_header *nextpool;       /* next pool of this size class  */
struct pool_header *prevpool;       /* previous pool       ""        */
uint arenaindex;                    /* index into arenas of base adr */
uint szidx;                         /* block size class index        */
uint nextoffset;                    /* bytes to virgin block         */
uint maxnextoffset;                 /* largest valid nextoffset      */

};
pool_header 作用

与其他pool链接, 组成双向链表

  1. 维护pool中可用的block, 单链表
  2. 保存 szidx , 这个和该pool中block的大小有关系, (block size=8, szidx=0), (block size=16, szidx=1)...用于内存分配时匹配到拥有对应大小block的pool

pool 初始化
void *
PyObject_Malloc(size_t nbytes)
{
...

      init_pool:
        // 1. 连接到 used_pools 双向链表, 作为表头
        // 注意, 这里 usedpools[0] 保存着 block size = 8 的所有used_pools的表头
        /* Frontlink to used pools. */
        next = usedpools[size + size]; /* == prev */
        pool->nextpool = next;
        pool->prevpool = next;
        next->nextpool = pool;
        next->prevpool = pool;
        pool->ref.count = 1;

        // 如果已经初始化过了...这里看初始化, 跳过
        if (pool->szidx == size) {
            /* Luckily, this pool last contained blocks
             * of the same size class, so its header
             * and free list are already initialized.
             */
            bp = pool->freeblock;
            pool->freeblock = *(block **)bp;
            UNLOCK();
            return (void *)bp;
        }
        /*
         * Initialize the pool header, set up the free list to
         * contain just the second block, and return the first
         * block.
         */
        // 开始初始化pool_header
        // 这里 size = (uint)(nbytes - 1) >> ALIGNMENT_SHIFT;  其实是Size class idx, 即szidx
        pool->szidx = size;

        // 计算获得每个block的size
        size = INDEX2SIZE(size);

        // 注意 #define POOL_OVERHEAD           ROUNDUP(sizeof(struct pool_header))
        // bp => 初始化为pool + pool_header size,  跳过pool_header的内存
        bp = (block *)pool + POOL_OVERHEAD;

        // 计算偏移量, 这里的偏移量是绝对值
        // #define POOL_SIZE               SYSTEM_PAGE_SIZE        /* must be 2^N */
        // POOL_SIZE = 4kb, POOL_OVERHEAD = pool_header size
        // 下一个偏移位置: pool_header size + 2 * size
        pool->nextoffset = POOL_OVERHEAD + (size << 1);
        // 4kb - size
        pool->maxnextoffset = POOL_SIZE - size;

        // freeblock指向 bp + size = pool_header size + size
        pool->freeblock = bp + size;

        // 赋值NULL
        *(block **)(pool->freeblock) = NULL;
        UNLOCK();
        return (void *)bp;
    }

pool 进行block分配 - 总体代码
if (pool != pool->nextpool) { //

        /*
         * There is a used pool for this size class.
         * Pick up the head block of its free list.
         */
        ++pool->ref.count;
        bp = pool->freeblock; // 指针指向空闲block起始位置
        assert(bp != NULL);

        // 代码-1
        // 调整 pool->freeblock (假设A节点)指向链表下一个, 即bp首字节指向的下一个节点(假设B节点) , 如果此时!= NULL
        // 表示 A节点可用, 直接返回
        if ((pool->freeblock = *(block **)bp) != NULL) {
            UNLOCK();
            return (void *)bp;
        }

        // 代码-2
        /*
         * Reached the end of the free list, try to extend it.
         */
        // 有足够的空间, 分配一个, pool->freeblock 指向后移
        if (pool->nextoffset <= pool->maxnextoffset) {
            /* There is room for another block. */
            // 变更位置信息
            pool->freeblock = (block*)pool +
                              pool->nextoffset;
            pool->nextoffset += INDEX2SIZE(size);
            *(block **)(pool->freeblock) = NULL; // 注意, 指向NULL
            UNLOCK();

            // 返回bp
            return (void *)bp;
        }

        // 代码-3
        /* Pool is full, unlink from used pools. */  // 满了, 需要从下一个pool获取
        next = pool->nextpool;
        pool = pool->prevpool;
        next->prevpool = pool;
        pool->nextpool = next;
        UNLOCK();
        return (void *)bp;
    }

pool进行block分配 -1
内存块尚未分配完, 且此时不存在回收的block, 全新进来的时候, 分配第一块block

(pool->freeblock = (block *)bp) == NULL
当进入代码逻辑2时,表示有空闲的block, 代码2的执行流程图如下

pool进行block分配 - 2 回收了某几个block
回收涉及的代码:

void
PyObject_Free(void *p)
{

poolp pool;
block *lastfree;
poolp next, prev;
uint size;

pool = POOL_ADDR(p);
if (Py_ADDRESS_IN_RANGE(p, pool)) {
    /* We allocated this address. */
    LOCK();
    /* Link p to the start of the pool's freeblock list.  Since
     * the pool had at least the p block outstanding, the pool
     * wasn't empty (so it's already in a usedpools[] list, or
     * was full and is in no list -- it's not in the freeblocks
     * list in any case).
     */
    assert(pool->ref.count > 0);            /* else it was empty */
    // p被释放, p的第一个字节值被设置为当前freeblock的值
    *(block **)p = lastfree = pool->freeblock;
    // freeblock被更新为指向p的首地址
    pool->freeblock = (block *)p;

    // 相当于往list中头插入了一个节点

 ...
}

}
每释放一个block,该blcok就会变成pool->freeblock的头结点, 假设已经连续分配了5块, 第1块和第4块被释放,此时的内存图示如下:

此时再一个block分配调用进来, 执行分配, 进入的逻辑是代码-1

bp = pool->freeblock; // 指针指向空闲block起始位置
// 代码-1
// 调整 pool->freeblock (假设A节点)指向链表下一个, 即bp首字节指向的下一个节点(假设B节点) , 如果此时!= NULL
// 表示 A节点可用, 直接返回
if ((pool->freeblock = (block *)bp) != NULL) {

UNLOCK();
return (void *)bp;

}

pool进行block分配 - 3 pool用完了
pool中内存空间都用完了, 进入代码-3

/ Pool is full, unlink from used pools. / // 满了, 需要从下一个pool获取
next = pool->nextpool;
pool = pool->prevpool;
next->prevpool = pool;
pool->nextpool = next;
UNLOCK();
return (void *)bp;
Python 内存分配策略之-arena
arena: 多个pool聚合的结果, 可放置64个pool

define ARENA_SIZE (256 << 10) / 256KB /

arena结构
一个完整的arena = arena_object + pool集合

/ Record keeping for arenas. /
struct arena_object {

/* The address of the arena, as returned by malloc.  Note that 0
 * will never be returned by a successful malloc, and is used
 * here to mark an arena_object that doesn't correspond to an
 * allocated arena.
 */
uintptr_t address;

/* Pool-aligned pointer to the next pool to be carved off. */
block* pool_address;

/* The number of available pools in the arena:  free pools + never-
 * allocated pools.
 */
uint nfreepools;

/* The total number of pools in the arena, whether or not available. */
uint ntotalpools;

/* Singly-linked list of available pools. */
struct pool_header* freepools;

/* Whenever this arena_object is not associated with an allocated
 * arena, the nextarena member is used to link all unassociated
 * arena_objects in the singly-linked `unused_arena_objects` list.
 * The prevarena member is unused in this case.
 *
 * When this arena_object is associated with an allocated arena
 * with at least one available pool, both members are used in the
 * doubly-linked `usable_arenas` list, which is maintained in
 * increasing order of `nfreepools` values.
 *
 * Else this arena_object is associated with an allocated arena
 * all of whose pools are in use.  `nextarena` and `prevarena`
 * are both meaningless in this case.
 */
struct arena_object* nextarena;
struct arena_object* prevarena;

};
arena_object的作用

  1. 与其他arena连接, 组成双向链表
  2. 维护arena中可用的pool, 单链表
    pool_header和管理的blocks内存是一块连续的内存 => pool_header被申请时,其管理的的block集合的内存一并被申请 uint maxnextoffset; / largest valid nextoffset /

arena_object 和其管理的内存是分离的 => arena_object被申请时,其管理的pool集合的内存没有被申请,而是在某一时刻建立关系的

arena的两种状态
/* The head of the singly-linked, NULL-terminated list of available

  • arena_objects.
    */

// 单链表
static struct arena_object* unused_arena_objects = NULL;

/* The head of the doubly-linked, NULL-terminated at each end, list of

  • arena_objects associated with arenas that have pools available.
    */

// 双向链表
static struct arena_object* usable_arenas = NULL;
arena 初始化

  • Allocate a new arena. If we run out of memory, return NULL. Else

    • allocate a new arena, and return the address of an arena_object
    • describing the new arena. It's expected that the caller will set
    • usable_arenas to the return value.
      */

static struct arena_object*
new_arena(void)
{

struct arena_object* arenaobj;
uint excess;        /* number of bytes above pool alignment */
void *address;
static int debug_stats = -1;

if (debug_stats == -1) {
    const char *opt = Py_GETENV("PYTHONMALLOCSTATS");
    debug_stats = (opt != NULL && *opt != '\0');
}
if (debug_stats)
    _PyObject_DebugMallocStats(stderr);

// 判断是否需要扩充"未使用"的arena_object列表
if (unused_arena_objects == NULL) {
    uint i;
    uint numarenas;
    size_t nbytes;

    /* Double the number of arena objects on each allocation.
     * Note that it's possible for `numarenas` to overflow.
     */
    // 确定需要申请的个数, 首次初始化, 16, 之后每次翻倍
    numarenas = maxarenas ? maxarenas << 1 : INITIAL_ARENA_OBJECTS;
    if (numarenas <= maxarenas)
        return NULL;                /* overflow */

if SIZEOF_SIZE_T <= SIZEOF_INT

    if (numarenas > SIZE_MAX / sizeof(*arenas))
        return NULL;                /* overflow */

endif

    nbytes = numarenas * sizeof(*arenas);
    // 申请内存
    arenaobj = (struct arena_object *)PyMem_RawRealloc(arenas, nbytes);
    if (arenaobj == NULL)
        return NULL;
    arenas = arenaobj;

    /* We might need to fix pointers that were copied.  However,
     * new_arena only gets called when all the pages in the
     * previous arenas are full.  Thus, there are *no* pointers
     * into the old array. Thus, we don't have to worry about
     * invalid pointers.  Just to be sure, some asserts:
     */
    assert(usable_arenas == NULL);
    assert(unused_arena_objects == NULL);

    /* Put the new arenas on the unused_arena_objects list. */
    for (i = maxarenas; i < numarenas; ++i) {
        arenas[i].address = 0;              /* mark as unassociated */
        // 新申请的一律为0, 标识着这个arena处于"未使用"
        arenas[i].nextarena = i < numarenas - 1 ?
                               &arenas[i+1] : NULL;
    }

     // 将其放入unused_arena_objects链表中
    // unused_arena_objects 为新分配内存空间的开头
    /* Update globals. */
    unused_arena_objects = &arenas[maxarenas];
    maxarenas = numarenas;
}

/* Take the next available arena object off the head of the list. */
assert(unused_arena_objects != NULL);
// 从unused_arena_objects中, 获取一个未使用的object
arenaobj = unused_arena_objects;
unused_arena_objects = arenaobj->nextarena;  // 更新链表
assert(arenaobj->address == 0);
// 申请内存, 256KB, 内存地址赋值给arena的address. 这块内存可用
address = _PyObject_Arena.alloc(_PyObject_Arena.ctx, ARENA_SIZE);
if (address == NULL) {
    /* The allocation failed: return NULL after putting the
     * arenaobj back.
     */
    arenaobj->nextarena = unused_arena_objects;
    unused_arena_objects = arenaobj;
    return NULL;
}
arenaobj->address = (uintptr_t)address;

++narenas_currently_allocated;
++ntimes_arena_allocated;
if (narenas_currently_allocated > narenas_highwater)
    narenas_highwater = narenas_currently_allocated;
arenaobj->freepools = NULL;
/* pool_address <- first pool-aligned address in the arena
   nfreepools <- number of whole pools that fit after alignment */
arenaobj->pool_address = (block*)arenaobj->address;
arenaobj->nfreepools = MAX_POOLS_IN_ARENA;
// 将pool的起始地址调整为系统页的边界
// 申请到 256KB, 放弃了一些内存, 而将可使用的内存边界pool_address调整到了与系统页对齐
excess = (uint)(arenaobj->address & POOL_SIZE_MASK);
if (excess != 0) {
    --arenaobj->nfreepools;
    arenaobj->pool_address += POOL_SIZE - excess;
}
arenaobj->ntotalpools = arenaobj->nfreepools;

return arenaobj;

}

从arenas取一个arena进行初始化

arena分配
new一个全新的arena

static void*
pymalloc_alloc(void *ctx, size_t nbytes)
{

        // 刚开始没有可用的arena
        if (usable_arenas == NULL) {
          // new一个, 作为双向链表的表头
          usable_arenas = new_arena();
          if (usable_arenas == NULL) {
              UNLOCK();
              goto redirect;
          }

          usable_arenas->nextarena =
              usable_arenas->prevarena = NULL;

       }

      .......

      // 从arena中获取一个pool
      pool = (poolp)usable_arenas->pool_address;
      assert((block*)pool <= (block*)usable_arenas->address +
                             ARENA_SIZE - POOL_SIZE);
      pool->arenaindex = usable_arenas - arenas;
      assert(&arenas[pool->arenaindex] == usable_arenas);
      pool->szidx = DUMMY_SIZE_IDX;

      // 更新 pool_address 向下一个节点
      usable_arenas->pool_address += POOL_SIZE;
      // 可用节点数量-1
      --usable_arenas->nfreepools;

}
从全新的arena中获取一个pool

假设arena是旧的, 怎么分配的pool, 跟pool分配block原理一样,使用单链表记录freepools

pool = usable_arenas->freepools;
if (pool != NULL) {
当arena中一整块pool被释放的时候

/* Free a memory block allocated by pymalloc_alloc().
Return 1 if it was freed.
Return 0 if the block was not allocated by pymalloc_alloc(). */
static int
pymalloc_free(void ctx, void p) {

struct arena_object* ao;
uint nf;  /* ao->nfreepools */

/* Link the pool to freepools.  This is a singly-linked
           * list, and pool->prevpool isn't used there.
          */
ao = &arenas[pool->arenaindex];
pool->nextpool = ao->freepools;
ao->freepools = pool;
nf = ++ao->nfreepools;

}
在pool整块被释放的时候, 会将pool加入到arena->freepools作为单链表的表头, 然后, 在从非全新arena中分配pool时, 优先从arena->freepools里面取, 如果取不到, 再从arena内存块里面获取

注: 上图中nfreepools = n - 2

当arena1用完了,获取arena1指向的下一个节点arena2

static void*
pymalloc_alloc(void *ctx, size_t nbytes)
{

      // 当发现用完了最后一个pool!!!!!!!!!!!
      // nfreepools = 0
      if (usable_arenas->nfreepools == 0) {
          assert(usable_arenas->nextarena == NULL ||
                 usable_arenas->nextarena->prevarena ==
                 usable_arenas);
          /* Unlink the arena:  it is completely allocated. */

          // 找到下一个节点!
          usable_arenas = usable_arenas->nextarena;
          // 右下一个
          if (usable_arenas != NULL) {
              usable_arenas->prevarena = NULL; // 更新下一个节点的prevarens
              assert(usable_arenas->address != 0);
          }
          // 没有下一个, 此时 usable_arenas = NULL, 下次进行内存分配的时候, 就会从arenas数组中取一个

      }

}
注意: 这里有个逻辑, 就是每分配一个pool, 就检查是不是用到了最后一个, 如果是, 需要变更usable_arenas到下一个可用的节点, 如果没有可用的, 那么下次进行内存分配的时候, 会判定从arenas数组中取一个

arena回收
内存分配和回收最小单位是block, 当一个block被回收的时候, 可能触发pool被回收, pool被回收, 将会触发arena的回收机制

arena中所有pool都是闲置的(empty), 将arena内存释放, 返回给操作系统
如果arena中之前所有的pool都是占用的(used), 现在释放了一个pool(empty), 需要将 arena加入到usable_arenas, 会加入链表表头
如果arena中empty的pool个数n, 则从useable_arenas开始寻找可以插入的位置. 将arena插入. (useable_arenas是一个有序链表, 按empty pool的个数, 保证empty pool数量越多, 被使用的几率越小, 最终被整体释放的机会越大)
内存分配的步骤
关注点:如何寻找到一块可用的nbytes的blcok内存?

pool = usedpools[size + size]

if pool:

​ pool 没满,取一个blcok返回

​ pool 满了,从下一个pool取一个blcok返回

else:

​ 获取arena, 从里面初始化一个pool, 拿到第一个blcok返回

进行内存分配和销毁, 所有操作都是在pool上进行的

问题: pool中所有block的size一样, 但是在arena中, 每个pool的size都可能不一样, 那么最终这些pool是怎么维护的? 怎么根据大小找到需要的block所在的pool? => usedpools

pool在内存池中的三种状态
used状态:pool中至少有一个block已经被使用,并且至少有一个block未被使用,这种状态的pool受控于Python内部维护的usedpool数组
full状态:pool中所有的block都已经被使用,这种状态的pool在arena中, 但不在arena的freepools链表中,处于full的pool各自独立, 不会被链表维护起来
empty状态:pool中所有的blcok都未被使用,处于这个状态的pool的集合通过其pool_header中的nextpool构成一个链表,链表的表头示arena_object中的freepools

Python内部维护的usedpools数组是一个非常巧妙的实现,维护着所有的处于used状态的pool,当申请内存时,python就会通过usedpools寻找到一个可用的pool(处于used状态),从中分配一个block。因此我们想,一定有一个usedpools相关联的机制,完成从申请的内存的大小到size class index之间的转换,否则python就无法找到最合适的pool了。这种机制和usedpools的结构有着密切的关系,我们看一下它的结构

usedpools
usedpools数组: 维护着所有处于used状态的pool, 当申请内存的时候, 会通过usedpools寻找到一块可用的(处于used状态的)pool, 从中分配一个block。

//obmalloc.c
typedef uint8_t block;

define PTA(x) ((poolp )((uint8_t )&(usedpools[2(x)]) - 2sizeof(block )))

define PT(x) PTA(x), PTA(x)

//在我当前的机器就是512/8=64个,对应的size class index就是从0到63

define NB_SMALL_SIZE_CLASSES (SMALL_REQUEST_THRESHOLD / ALIGNMENT)

static poolp usedpools[2 ((NB_SMALL_SIZE_CLASSES + 7) / 8) 8] = {

PT(0), PT(1), PT(2), PT(3), PT(4), PT(5), PT(6), PT(7)

if NB_SMALL_SIZE_CLASSES > 8

, PT(8), PT(9), PT(10), PT(11), PT(12), PT(13), PT(14), PT(15)

if NB_SMALL_SIZE_CLASSES > 16

, PT(16), PT(17), PT(18), PT(19), PT(20), PT(21), PT(22), PT(23)

if NB_SMALL_SIZE_CLASSES > 24

, PT(24), PT(25), PT(26), PT(27), PT(28), PT(29), PT(30), PT(31)

if NB_SMALL_SIZE_CLASSES > 32

, PT(32), PT(33), PT(34), PT(35), PT(36), PT(37), PT(38), PT(39)

if NB_SMALL_SIZE_CLASSES > 40

, PT(40), PT(41), PT(42), PT(43), PT(44), PT(45), PT(46), PT(47)

if NB_SMALL_SIZE_CLASSES > 48

, PT(48), PT(49), PT(50), PT(51), PT(52), PT(53), PT(54), PT(55)

if NB_SMALL_SIZE_CLASSES > 56

, PT(56), PT(57), PT(58), PT(59), PT(60), PT(61), PT(62), PT(63)

if NB_SMALL_SIZE_CLASSES > 64

error "NB_SMALL_SIZE_CLASSES should be less than 64"

endif / NB_SMALL_SIZE_CLASSES > 64 /

endif / NB_SMALL_SIZE_CLASSES > 56 /

endif / NB_SMALL_SIZE_CLASSES > 48 /

endif / NB_SMALL_SIZE_CLASSES > 40 /

endif / NB_SMALL_SIZE_CLASSES > 32 /

endif / NB_SMALL_SIZE_CLASSES > 24 /

endif / NB_SMALL_SIZE_CLASSES > 16 /

endif / NB_SMALL_SIZE_CLASSES > 8 /

};

如果正在申请28字节, python首先会获取(size class index) size = (uint )(nbytes - 1) >> ALIGNMENT_SHIFT 显然这里size=3, 那么在usedpools中,寻找第3+3=6个元素,发现usedpools[6]的值是指向usedpools[4]的地址

//obmalloc.c
/ Pool for small blocks. /
struct pool_header {

union { block *_padding;
        uint count; } ref;          /* 当然pool里面的block数量    */
block *freeblock;                   /* 一个链表,指向下一个可用的block   */
struct pool_header *nextpool;       /* 指向下一个pool  */
struct pool_header *prevpool;       /* 指向上一个pool       ""        */
uint arenaindex;                    /* 在area里面的索引 */
uint szidx;                         /* block的大小(固定值?后面说)     */
uint nextoffset;                    /* 下一个可用block的内存偏移量         */
uint maxnextoffset;                 /* 最后一个block距离开始位置的距离     */

};

显然是从usedpools6开始向后偏移8个字节(一个ref的大小加上一个freeblock的大小)后的内存,正好是usedpools[6]的地址(即usedpools+6),这是python内部的trick

当我们要申请一个size class为32字节的pool,想要将其放入这个usedpools中时,要怎么做呢?从上面的描述我们知道,只需要进行usedpools[i+i] -> nextpool = pool即可,其中i为size class index,对应于32字节,这个i为3.当下次需要访问size class 为32字节(size class index为3)的pool时,只需要简单地访问usedpools[3+3]就可以得到了。python正是使用这个usedpools快速地从众多的pool中快速地寻找到一个最适合当前内存需求的pool,从中分配一块block。

//obmalloc.c
static int
pymalloc_alloc(void ctx, void *ptr_p, size_t nbytes)
{

block *bp;
poolp pool;
poolp next;
uint size;
...
LOCK();
//获得size class index
size = (uint)(nbytes - 1) >> ALIGNMENT_SHIFT;
//直接通过usedpools[size+size],这里的size不就是我们上面说的i吗?
pool = usedpools[size + size];
//如果usedpools中有可用的pool
if (pool != pool->nextpool) {
    ... //有可用pool
}
... //无可用pool,尝试获取empty状态的pool

}
内存池全局结构

参考:

pyhton源码阅读-内存管理机制

python源码解析第17章-python内存管理与垃圾回收

原文地址https://www.cnblogs.com/panlq/p/13056907.html

相关文章
|
15天前
|
监控 Java 应用服务中间件
高级java面试---spring.factories文件的解析源码API机制
【11月更文挑战第20天】Spring Boot是一个用于快速构建基于Spring框架的应用程序的开源框架。它通过自动配置、起步依赖和内嵌服务器等特性,极大地简化了Spring应用的开发和部署过程。本文将深入探讨Spring Boot的背景历史、业务场景、功能点以及底层原理,并通过Java代码手写模拟Spring Boot的启动过程,特别是spring.factories文件的解析源码API机制。
45 2
|
25天前
|
存储 Java 编译器
Java内存模型(JMM)深度解析####
本文深入探讨了Java内存模型(JMM)的工作原理,旨在帮助开发者理解多线程环境下并发编程的挑战与解决方案。通过剖析JVM如何管理线程间的数据可见性、原子性和有序性问题,本文将揭示synchronized关键字背后的机制,并介绍volatile关键字和final关键字在保证变量同步与不可变性方面的作用。同时,文章还将讨论现代Java并发工具类如java.util.concurrent包中的核心组件,以及它们如何简化高效并发程序的设计。无论你是初学者还是有经验的开发者,本文都将为你提供宝贵的见解,助你在Java并发编程领域更进一步。 ####
|
5天前
|
算法 Java 程序员
Python内存管理机制深度剖析####
本文将深入浅出地探讨Python中的内存管理机制,特别是其核心组件——垃圾收集器(Garbage Collector, GC)的工作原理。不同于传统的摘要概述,我们将通过一个虚拟的故事线,跟随“内存块”小M的一生,从诞生、使用到最终被回收的过程,来揭示Python是如何处理对象生命周期,确保高效利用系统资源的。 ####
11 1
|
15天前
|
存储 安全 Linux
Golang的GMP调度模型与源码解析
【11月更文挑战第11天】GMP 调度模型是 Go 语言运行时系统的核心部分,用于高效管理和调度大量协程(goroutine)。它通过少量的操作系统线程(M)和逻辑处理器(P)来调度大量的轻量级协程(G),从而实现高性能的并发处理。GMP 模型通过本地队列和全局队列来减少锁竞争,提高调度效率。在 Go 源码中,`runtime.h` 文件定义了关键数据结构,`schedule()` 和 `findrunnable()` 函数实现了核心调度逻辑。通过深入研究 GMP 模型,可以更好地理解 Go 语言的并发机制。
|
17天前
|
存储 消息中间件 算法
深入探索操作系统的心脏——内核机制解析
本文旨在揭示操作系统核心——内核的工作原理,通过剖析其关键组件与机制,为读者提供一个清晰的内核结构图景。不同于常规摘要的概述性内容,本文摘要将直接聚焦于内核的核心概念、主要功能以及其在系统管理中扮演的角色,旨在激发读者对操作系统深层次运作原理的兴趣与理解。
|
22天前
|
安全 开发者 Python
Python的内存管理pymalloc
Python的内存管理pymalloc
|
26天前
|
安全 开发者 Python
Python的内存管理pymalloc
Python的内存管理pymalloc
|
27天前
|
监控 Java 开发者
Python的垃圾收集机制有哪些?
Python的垃圾收集机制有哪些?
|
28天前
|
消息中间件 缓存 安全
Future与FutureTask源码解析,接口阻塞问题及解决方案
【11月更文挑战第5天】在Java开发中,多线程编程是提高系统并发性能和资源利用率的重要手段。然而,多线程编程也带来了诸如线程安全、死锁、接口阻塞等一系列复杂问题。本文将深度剖析多线程优化技巧、Future与FutureTask的源码、接口阻塞问题及解决方案,并通过具体业务场景和Java代码示例进行实战演示。
43 3
|
27天前
|
监控 Java API
Python是如何实现内存管理的
Python是如何实现内存管理的