MaxCompute产品使用合集之如何解析嵌套的JSON数据

本文涉及的产品
云原生大数据计算服务MaxCompute,500CU*H 100GB 3个月
云原生大数据计算服务 MaxCompute,5000CU*H 100GB 3个月
简介: MaxCompute作为一款全面的大数据处理平台,广泛应用于各类大数据分析、数据挖掘、BI及机器学习场景。掌握其核心功能、熟练操作流程、遵循最佳实践,可以帮助用户高效、安全地管理和利用海量数据。以下是一个关于MaxCompute产品使用的合集,涵盖了其核心功能、应用场景、操作流程以及最佳实践等内容。

问题一:删除,和变动的数据,hive分区要怎么处理呢?

删除,和变动的数据,hive分区要怎么处理呢?

参考回答:

即使业务数据会变动且没有一个截止日期,仍然可以采用分区策略来管理Hive中的数据。在Hive中,可以使用动态分区或者静态分区来处理这种情况。

动态分区可以根据实际数据的情况,将数据自动分配到不同的分区中,无需手动指定分区的范围。例如,可以根据时间字段将数据动态地分配到不同的月份或季度分区中。这样可以方便地对数据进行查询和管理,同时提高查询效率。

对于没有截止日期的业务数据,可以选择一个适当的日期范围作为分区的依据。例如,可以选择最近一年的数据作为当前分区,将更早的数据作为历史分区。这样既可以方便地对当前数据进行查询和管理,也可以保留历史数据供后续分析。

总之,分区是一种有效的数据管理策略,可以根据实际情况选择适当的分区方式来处理不断变动的业务数据。


关于本问题的更多回答可点击原文查看:https://developer.aliyun.com/ask/595611



问题二:使用自建flink写入大数据计算MaxCompute数据写不进去是咋回事?

使用自建flink写入大数据计算MaxCompute数据写不进去是咋回事?

参考回答:

在使用自建Flink集群写入阿里云MaxCompute的Transaction Table 2.0时,如果数据无法成功写入,可能存在以下原因及相应的解决办法:

  1. Flink Connector MaxCompute版本兼容性问题
  • 确保你使用的Flink版本与MaxCompute的Flink Connector版本兼容。不同版本的Flink与Connector之间的兼容性可能导致写入失败。
  1. 配置错误
  • 检查Flink作业配置,确保正确设置了MaxCompute的接入点(Endpoint)、Access Key ID、Access Key Secret以及Project名称等相关参数。
  • 针对Transaction Table 2.0,需要确认是否正确配置了事务相关的参数,如事务模式、事务表的写入模式等。
  1. 表结构不匹配
  • 确认Flink作业产生的数据流结构与MaxCompute表结构完全一致,包括字段名、字段类型、分区等信息。
  1. 权限问题
  • 检查Flink作业运行时使用的账号是否具备向MaxCompute表写入数据的权限。
  1. 事务一致性问题
  • Transaction Table 2.0支持ACID特性,如果Flink作业中处理数据的方式不符合事务性的要求,可能会导致写入失败。确保Flink作业内部的事务处理逻辑正确,例如批处理作业完整结束后提交事务。
  1. 网络问题或超时
  • 检查Flink集群与MaxCompute之间的网络连接状况,确保没有网络不稳定或超时等问题。


关于本问题的更多回答可点击原文查看:https://developer.aliyun.com/ask/595500



问题三:大数据计算MaxCompute有解析 嵌套 json的demo么?

大数据计算MaxCompute有解析 嵌套 json的demo么?

参考回答:

看下json函数有没有符合的。https://help.aliyun.com/zh/maxcompute/user-guide/complex-type-functions?spm=a2c4g.11186623.0.0.2d5c5251PgAy1d 


关于本问题的更多回答可点击原文查看:https://developer.aliyun.com/ask/595499



问题四:大数据计算MaxCompute中data_works查询元数据信息的是哪个表啊?

大数据计算MaxCompute中data_works查询元数据信息的是哪个表啊?

参考回答:

MaxCompute有Information Schema。

https://help.aliyun.com/zh/maxcompute/user-guide/tenant-level-information-schema?spm=a2c4g.11174283.0.i1 


关于本问题的更多回答可点击原文查看:https://developer.aliyun.com/ask/595495



问题五:大数据计算MaxCompute有没有应用程序通过公网 去访问 mc的文档呢?

大数据计算MaxCompute有没有应用程序通过公网 去访问 mc的文档呢?

参考回答:

https://help.aliyun.com/zh/maxcompute/user-guide/sdk-reference/?spm=a2c4g.11174283.0.0.741f4efbrNj4aT

https://help.aliyun.com/zh/maxcompute/user-guide/jdbc-reference/?spm=a2c4g.11186623.0.i43


关于本问题的更多回答可点击原文查看:https://developer.aliyun.com/ask/593987

相关实践学习
基于MaxCompute的热门话题分析
本实验围绕社交用户发布的文章做了详尽的分析,通过分析能得到用户群体年龄分布,性别分布,地理位置分布,以及热门话题的热度。
SaaS 模式云数据仓库必修课
本课程由阿里云开发者社区和阿里云大数据团队共同出品,是SaaS模式云原生数据仓库领导者MaxCompute核心课程。本课程由阿里云资深产品和技术专家们从概念到方法,从场景到实践,体系化的将阿里巴巴飞天大数据平台10多年的经过验证的方法与实践深入浅出的讲给开发者们。帮助大数据开发者快速了解并掌握SaaS模式的云原生的数据仓库,助力开发者学习了解先进的技术栈,并能在实际业务中敏捷的进行大数据分析,赋能企业业务。 通过本课程可以了解SaaS模式云原生数据仓库领导者MaxCompute核心功能及典型适用场景,可应用MaxCompute实现数仓搭建,快速进行大数据分析。适合大数据工程师、大数据分析师 大量数据需要处理、存储和管理,需要搭建数据仓库?学它! 没有足够人员和经验来运维大数据平台,不想自建IDC买机器,需要免运维的大数据平台?会SQL就等于会大数据?学它! 想知道大数据用得对不对,想用更少的钱得到持续演进的数仓能力?获得极致弹性的计算资源和更好的性能,以及持续保护数据安全的生产环境?学它! 想要获得灵活的分析能力,快速洞察数据规律特征?想要兼得数据湖的灵活性与数据仓库的成长性?学它! 出品人:阿里云大数据产品及研发团队专家 产品 MaxCompute 官网 https://www.aliyun.com/product/odps 
相关文章
|
1月前
|
SQL 存储 JSON
SQL,解析 json
SQL,解析 json
66 8
|
10天前
|
存储 人工智能 分布式计算
大数据& AI 产品月刊【2024年10月】
大数据& AI 产品技术月刊【2024年10月】,涵盖本月技术速递、产品和功能发布、市场和客户应用实践等内容,帮助您快速了解阿里云大数据& AI 方面最新动态。
zdl
|
3天前
|
消息中间件 运维 大数据
大数据实时计算产品的对比测评:实时计算Flink版 VS 自建Flink集群
本文介绍了实时计算Flink版与自建Flink集群的对比,涵盖部署成本、性能表现、易用性和企业级能力等方面。实时计算Flink版作为全托管服务,显著降低了运维成本,提供了强大的集成能力和弹性扩展,特别适合中小型团队和业务波动大的场景。文中还提出了改进建议,并探讨了与其他产品的联动可能性。总结指出,实时计算Flink版在简化运维、降低成本和提升易用性方面表现出色,是大数据实时计算的优选方案。
zdl
19 0
|
1月前
|
人工智能 分布式计算 大数据
大数据&AI产品月刊【2024年9月】
大数据& AI 产品技术月刊【2024年9月】,涵盖本月技术速递、2024云栖大会实录、产品和功能发布、市场和客户应用实践等内容,帮助您快速了解阿里云大数据& AI 方面最新动态。
|
25天前
|
Oracle 大数据 数据挖掘
企业内训|大数据产品运营实战培训-某电信运营商大数据产品研发中心
本课程是TsingtaoAI专为某电信运营商的大数据产品研发中心的产品支撑组设计,旨在深入探讨大数据在电信运营商领域的应用与运营策略。通过密集的培训,从数据的本质与价值出发,系统解析大数据工具和技术的最新进展,深入剖析行业内外的实践案例。课程涵盖如何理解和评估数据、如何有效运用大数据技术、以及如何在不同业务场景中实现数据的价值转化。
36 0
|
1月前
|
SQL 运维 大数据
大数据实时计算产品的对比测评
在使用多种Flink实时计算产品后,我发现Flink凭借其流批一体的优势,在实时数据处理领域表现出色。它不仅支持复杂的窗口机制与事件时间处理,还具备高效的数据吞吐能力和精准的状态管理,确保数据处理既快又准。此外,Flink提供了多样化的编程接口和运维工具,简化了开发流程,但在界面友好度上还有提升空间。针对企业级应用,Flink展现了高可用性和安全性,不过价格因素可能影响小型企业的采纳决策。未来可进一步优化文档和自动化调优工具,以提升用户体验。
115 0
|
1月前
|
SQL 存储 监控
大数据-161 Apache Kylin 构建Cube 按照日期、区域、产品、渠道 与 Cube 优化
大数据-161 Apache Kylin 构建Cube 按照日期、区域、产品、渠道 与 Cube 优化
49 0
|
2月前
|
JSON API 数据格式
requests库中json参数与data参数使用方法的深入解析
选择 `data`或 `json`取决于你的具体需求,以及服务器端期望接收的数据格式。
215 2
|
1月前
|
JSON JavaScript API
商品详情数据接口解析返回的JSON数据(API接口整套流程)
商品详情数据接口解析返回的JSON数据是API接口使用中的一个重要环节,它涉及从发送请求到接收并处理响应的整个流程。以下是一个完整的API接口使用流程,包括如何解析返回的JSON数据:
|
3天前
|
监控 Java 应用服务中间件
高级java面试---spring.factories文件的解析源码API机制
【11月更文挑战第20天】Spring Boot是一个用于快速构建基于Spring框架的应用程序的开源框架。它通过自动配置、起步依赖和内嵌服务器等特性,极大地简化了Spring应用的开发和部署过程。本文将深入探讨Spring Boot的背景历史、业务场景、功能点以及底层原理,并通过Java代码手写模拟Spring Boot的启动过程,特别是spring.factories文件的解析源码API机制。
14 2

相关产品

  • 云原生大数据计算服务 MaxCompute
  • 推荐镜像

    更多