AI 终极问题:我们的大脑是一台超级计算机吗?

简介: 脑科学作为人类科学的最后前沿已取得重大发展,但截至目前,我们仍对大脑的诸多奥秘一知半解。

云栖号资讯:【点击查看更多行业资讯
在这里您可以找到不同行业的第一手的上云资讯,还在等什么,快来!

编者按:本文来自微信公众号“学术头条”(ID:SciTouTiao),作者:何静、周子嫄,36氪经授权发布。

v2_d3e514a05c954d9180fdef096c14ff24_img_000

人类的大脑是自然界最复杂的物体,研究人员已投入大量时间与精力来探索大脑。

目前,科学家们已经揭示了大脑的基本工作方式,最新技术已经可以操纵小鼠的大脑,让小鼠记忆此前从未嗅过的气味,甚至改变小鼠大脑里糟糕的记忆,转化为美好记忆;还可以利用脑电波改变人们对面部的感知;甚至让一个瘫痪的人用意念控制机械臂。

这些新技术带来了无限想象,可以让我们读懂人的心理、侦察罪犯,甚至将大脑与计算机互联。

但受限于大量无法分析的数据,探索大脑的未来道路并非坦途。正如德国神经学家奥拉夫・斯庞斯 (Olaf Sporns) 所言:“神经科学仍缺乏将大脑数据转化为基础知识的理论框架。”

神经科学家阿内・丘奇兰德 (Anne Churchland) 与拉里・艾勃特 (Larry Abbott) 也强调分析大量数据时困难重重,“除了需要实验技巧与创新技术,还需要大量先进的数据分析方法和理论概念模型。”

此外,大脑功能也非单一理论。正如 DNA 双螺旋结构的共同发现者弗朗西斯・克里克 (Francis Crick) 所发现的,大脑是一个完整进化的结构,其各个部分在不同时刻进化,分别对应解决不同问题 。

目前,人们对大脑如何工作的理解也较为片面。许多神经科学的感官研究更关注视觉而非嗅觉,因为嗅觉在概念和技术方面都更具挑战性。但嗅觉与视觉的工作方式无论在计算还是结构方面都迥然不同。如果仅仅研究视觉,我们对大脑功能及其运作方式的理解将十分有限。

大脑功能与程序编码

将大脑比拟为计算机的说法一直主导着神经科学领域。据统计,仅在过去十年间,就有超过 1.1 万篇该主题相关论文发表。

事实上,1951 年数字时代揭开序幕之时,神经学先驱卡尔・拉什利 (Karl Lashley) 就已反对将大脑比喻为机器。拉什利写道,“我认为,人们更可能通过研究大脑本身与其行为现象来了解大脑如何工作,而非沉溺于牵强附会的物理类比之中。”

法国神经学家罗曼・布雷特(Romain Brette)进一步驳斥了将大脑功能类比为程序编码的说法。布雷特认为,在考虑 “编码” 时,研究人员已将一种技术意义(即刺激与神经元活动之间存在的联系)转向了一种表征意义(即神经元编码代表该刺激)*。

大多数神经编码的隐含意义为,神经网络活动主要呈现给大脑中的理想观察者,通常称为 “下游结构”,它能以最佳方式解码信号。但这些结构处理信号的方式未知,甚至在简单神经网络功能模型中也鲜有明确假设。

处理神经代码通常为一系列的线性步骤,就像多米诺骨牌一样一个接一个地倒下。但 大脑由高度复杂的神经网络组成,这些神经网络相互联系,并与外界互联产生作用。如果只关注神经元,不将神经网络与动物行为联系起来,就会错过处理的要点。

v2_8b387383c2f140078b7a1356fb8e8036_img_000_jpeg

大脑的 MRI 扫描图像

匈牙利神经学家吉尔吉・布扎萨基(Gyorgy Buzsaki)在其新书《由内而外的大脑》(the brain from Inside Out) 中概述,大脑并非简单地被动吸收刺激并通过神经编码来表达,而是积极地以各种可能性寻找并测试潜在选择。他的结论是,大脑并不代表信息,而是构造信息。

大脑意识上传或转移

一些研究人员认为,思维是一种可以在神经硬件上实现的操作系统。换而言之,思维被视为一种特定计算状态,可以上传到某个设备或另一个大脑之中。

唯物主义假设,人类的大脑和思维与其他事物相同,神经元及其支持的过程(包括意识)共存。计算机中的软硬件相互分开,但大脑与思想是由湿件(软件、硬件以外的 “件”)组成的,且相互交织。

v2_d776fa344c094e40a61734d14022a311_img_000

想象一下,我们可以改变神经系统并运行不同程序,还能把思想上传到服务器上。这听起来很科幻,但其背后隐含的却是一种非唯物主义观点,可追溯到笛卡尔时代甚至更早之前,即思想以某种方式浮现在人脑之中,可以转移到另一个大脑,或者被另一个大脑取代。

事实上,通过解读一系列神经元的状态,并将其写入新的有机或无机基质中,这种有点唯心主义的想法,就披上了一层科学的外衣。

在想象大脑如何工作时,我们不仅需要理解神经元功能,还需要强大的计算能力并精确模拟大脑结构。因此,首先要完全模拟一个能维持单一状态的神经系统,但目前整个人类文明离迈出这一步还很远。

在芯片上模拟神经科学

在科幻电影中,面对不是一个级别的 “外星科技”,人类科学家只能通过反向工程进行拆解研究,以期能获得零星收获。面对复杂的人类大脑,反向工程也成为破解出大脑运行策略,以及将其转换成可为机器所用算法的有效手段。

2017 年,神经科学家埃里克・乔纳斯(Eric Jonas)与康拉德・柯丁(Konrad Kording)决定在真正的计算机芯片上进行实验,运用数据分析方法进一步了解人脑。他们将分析大脑的技术应用于上个世纪 70 年代末 80 年代初的 MOS 6507 处理器,该处理器可以运行 “太空入侵者” 等游戏。

首先,通过扫描芯片上的 3510 个增强型晶体管获得芯片连接体,再在一台现代计算机上模拟该设备,包括运行 10 秒游戏程序。然后使用各种神经科学技术,模拟 “病变”(从仿真设备中删除晶体管),分析虚拟晶体管的活动并研究其互联性。同时通过运行不同游戏,观察各种操作对系统行为的影响。

尽管部署了强大的分析工具,且能明确解释芯片的工作原理,但这项研究仍未能检测出芯片内部的信息处理层次结构。正如乔纳斯和柯丁所言,这些技术并不能对研究人脑产生 “有意义的理解”,所得出的结果较为悲观。

这一实验结果也表明,我们仍需重大理论突破才能在人脑研究领域取得进展。现有概念与分析工具仍无法解释人脑奥秘。但该模拟实验并非毫无意义,至少通过实验我们已经可以测试假设,并将模型与可精确操作的成熟系统相联系。

v2_82f3c9aa8c2c424793b0c5480748f204_img_000

事实上,大脑与计算机的结构完全不同。2006 年,拉里・艾勃特 (Larry Abbott) 在 《此设备的开关在哪里?》一文中称,他探索了电子设备中最基本组成部分(开关)的潜在生物物理基础。虽然抑制性突触可以通过让下游神经元失去反应而改变神经活动流向,但这种相互作用在大脑中较为少见。

神经元并非一个可以打开或关闭,并形成接线图的二进制开关。与此相反,神经元以类似方式做出反应,再随着刺激的变化而改变活动。神经系统主要通过改变大量单元组成的细胞网络激活模式来改变工作方式,其网络节点不是晶体管或电子管那样的稳定节点,而是成千上万组能随着时间推移对网络作出持续响应的神经元。

这是一个亟待解决的重要问题。大脑由神经元与其他细胞组成,在神经网络中相互作用,其活动不仅受突触活动影响,还与神经调节因子等多种因素有关。此外,人脑的功能也涉及神经元的复杂动态模式。

或许就在不久的将来,各种脑机实验将会取得突破性进展,理论家也将破解所有大脑功能并揭示其功能原理。

资料来源:

https://www.theguardian.com/science/2020/feb/27/why-your-brain-is-not-a-computer-neuroscience-neural-networks-consciousness?

https://www.theguardian.com/science/2015/mar/09/rodent-recall-false-but-happy-memories-implanted-in-sleeping-mice

https://www.eurekalert.org/pub_releases/2020-03/uom-ly022720.php

https://www.nature.com/articles/s41598-020-63755-5

https://www.quantamagazine.org/common-sense-comes-to-computers-20200430/

【云栖号在线课堂】每天都有产品技术专家分享!
课程地址:https://yqh.aliyun.com/live

立即加入社群,与专家面对面,及时了解课程最新动态!
【云栖号在线课堂 社群】https://c.tb.cn/F3.Z8gvnK

原文发布时间:2020-06-03
本文作者:学术头条
本文来自:“36kr”,了解相关信息可以关注“36kr

相关文章
|
3月前
|
机器学习/深度学习 人工智能 TensorFlow
神经网络深度剖析:Python带你潜入AI大脑,揭秘智能背后的秘密神经元
【8月更文挑战第1天】在当今科技飞速发展的时代,AI已成为日常生活中不可或缺的一部分。神经网络作为AI的核心,通过模拟人脑中的神经元连接方式处理复杂数据模式。利用Python及其强大的库TensorFlow,我们可以轻松构建神经网络模型。示例代码展示了如何建立一个含有两层隐藏层的简单神经网络,用于分类任务。神经网络通过反向传播算法不断优化权重和偏置,从而提高预测准确性。随着技术的进步,神经网络正变得越来越深、越来越复杂,能够应对更加艰巨的挑战,推动着AI领域向前发展。
44 2
|
29天前
|
机器学习/深度学习 人工智能 算法
Nature子刊:AI模型测大脑年龄,究竟哪些因素会加速大脑衰老?
【10月更文挑战第7天】《自然医学》杂志近期发布了一项研究,介绍了一种名为BrainAge的人工智能模型,该模型可预测个体的大脑年龄并分析影响大脑衰老的因素。研究团队来自美国加州大学旧金山分校,利用英国生物银行的近50,000名参与者的数据,发现高血压、糖尿病、肥胖、吸烟、饮酒、缺乏运动及遗传因素均与大脑衰老有关。尽管存在数据集限制等局限性,BrainAge模型仍为研究大脑衰老和相关疾病提供了重要工具。
41 1
|
2月前
|
机器学习/深度学习 人工智能 TensorFlow
神经网络深度剖析:Python带你潜入AI大脑,揭秘智能背后的秘密神经元
【9月更文挑战第12天】在当今科技飞速发展的时代,人工智能(AI)已深入我们的生活,从智能助手到自动驾驶,从医疗诊断到金融分析,其力量无处不在。这一切的核心是神经网络。本文将带领您搭乘Python的航船,深入AI的大脑,揭秘智能背后的秘密神经元。通过构建神经网络模型,我们可以模拟并学习复杂的数据模式。以下是一个使用Python和TensorFlow搭建的基本神经网络示例,用于解决简单的分类问题。
47 10
|
6月前
|
存储 人工智能 自然语言处理
掌握AI摘要技术解锁个人第二大脑
掌握AI摘要技术解锁个人第二大脑
185 0
|
机器学习/深度学习 人工智能 编解码
人脑90%都是自监督学习,AI大模型离模拟大脑还有多远?
人脑90%都是自监督学习,AI大模型离模拟大脑还有多远?
211 0
|
数据采集 人工智能 数据可视化
AI读脑炸裂!扫描大脑画面,Stable Diffusion逼真复现图像
AI读脑炸裂!扫描大脑画面,Stable Diffusion逼真复现图像
182 0
|
人工智能 边缘计算 安全
【年终特辑】看见科技创新力量 洞见时代创业精神—航空航天—星测未来:给卫星装上AI大脑瞄准卫星智能化专业市场
【年终特辑】看见科技创新力量 洞见时代创业精神—航空航天—星测未来:给卫星装上AI大脑瞄准卫星智能化专业市场
183 0
|
存储 机器学习/深度学习 人工智能
模拟大脑功能,这个AI模型真正实现像人一样持续学习
模拟大脑功能,这个AI模型真正实现像人一样持续学习
165 0
|
机器学习/深度学习 人工智能 自然语言处理
上海数字大脑研究院首次发布《2022上半年度人工智能行业报告》,多层面深度分析全球AI发展
上海数字大脑研究院首次发布《2022上半年度人工智能行业报告》,多层面深度分析全球AI发展
236 0
|
机器学习/深度学习 Web App开发 人工智能
AI读脑炸裂!扫描大脑画面,Stable Diffusion逼真复现图像(2)
AI读脑炸裂!扫描大脑画面,Stable Diffusion逼真复现图像
182 0

热门文章

最新文章

下一篇
无影云桌面