分布式限流之Redis+Lua实现

本文涉及的产品
Redis 开源版,标准版 2GB
推荐场景:
搭建游戏排行榜
云数据库 Tair(兼容Redis),内存型 2GB
简介: 分布式限流最关键的是要将限流服务做成原子化,而解决方案可以使用redis+lua或者nginx+lua技术进行实现,通过这两种技术可以实现的高并发和高性能。本篇我们来使用redis+lua实现时间窗内某个接口的请求数限流。

【转载请注明出处】:https://developer.aliyun.com/article/758604

分布式限流最关键的是要将限流服务做成原子化,而解决方案可以使用redis+lua或者nginx+lua技术进行实现,通过这两种技术可以实现的高并发和高性能。

首先我们来使用redis+lua实现时间窗内某个接口的请求数限流,实现了该功能后可以改造为限流总并发/请求数和限制总资源数。Lua本身就是一种编程语言,也可以使用它实现复杂的令牌桶或漏桶算法。
因操作是在一个lua脚本中(相当于原子操作),又因Redis是单线程模型,因此是线程安全的。

相比Redis事务来说,Lua脚本有以下优点

  • 减少网络开销: 不使用 Lua 的代码需要向 Redis 发送多次请求,而脚本只需一次即可,减少网络传输;
  • 原子操作:Redis 将整个脚本作为一个原子执行,无需担心并发,也就无需事务;
  • 复用:脚本会永久保存 Redis 中,其他客户端可继续使用。

下面使用SpringBoot项目来进行介绍。

准备Lua 脚本

req_ratelimit.lua

local key = "req.rate.limit:" .. KEYS[1]   --限流KEY
local limitCount = tonumber(ARGV[1])       --限流大小
local limitTime = tonumber(ARGV[2])        --限流时间
local current = tonumber(redis.call('get', key) or "0")
if current + 1 > limitCount then --如果超出限流大小
    return 0
else  --请求数+1,并设置1秒过期
    redis.call("INCRBY", key,"1")
    redis.call("expire", key,limitTime)
    return current + 1
end
  • 我们通过KEYS[1] 获取传入的key参数
  • 通过ARGV[1]获取传入的limit参数
  • redis.call方法,从缓存中get和key相关的值,如果为nil那么就返回0
  • 接着判断缓存中记录的数值是否会大于限制大小,如果超出表示该被限流,返回0
  • 如果未超过,那么该key的缓存值+1,并设置过期时间为1秒钟以后,并返回缓存值+1

准备Java项目

pom.xml加入
<dependencies>
    <dependency>
        <groupId>org.springframework.boot</groupId>
        <artifactId>spring-boot-starter-web</artifactId>
    </dependency>
    <dependency>
        <groupId>org.springframework.boot</groupId>
        <artifactId>spring-boot-starter-data-redis</artifactId>
    </dependency>
    <dependency>
        <groupId>org.springframework.boot</groupId>
        <artifactId>spring-boot-starter-aop</artifactId>
    </dependency>
    <dependency>
        <groupId>org.apache.commons</groupId>
        <artifactId>commons-lang3</artifactId>
    </dependency>
    <dependency>
        <groupId>org.springframework.boot</groupId>
        <artifactId>spring-boot-starter-test</artifactId>
    </dependency>
</dependencies>

Redis 配置

spring.redis.host=127.0.0.1 
spring.redis.port=6379 
spring.redis.password=
spring.redis.database=0
# 连接池最大连接数(使用负值表示没有限制)
spring.redis.jedis.pool.max-active=20
# 连接池最大阻塞等待时间(使用负值表示没有限制)
spring.redis.jedis.pool.max-wait=-1
# 连接池中的最大空闲连接
spring.redis.jedis.pool.max-idle=10
# 连接池中的最小空闲连接
spring.redis.jedis.pool.min-idle=0
# 连接超时时间(毫秒)
spring.redis.timeout=2000
限流注解

注解的目的,是在需要限流的方法上使用

@Target({ElementType.TYPE, ElementType.METHOD})
@Retention(RetentionPolicy.RUNTIME)
public @interface RateLimiter {

    /**
     * 限流唯一标识
     * @return
     */
    String key() default "";

    /**
     * 限流时间
     * @return
     */
    int time();

    /**
     * 限流次数
     * @return
     */
    int count();

}
lua文件配置及RedisTemplate配置
@Aspect
@Configuration
@Slf4j
public class RateLimiterAspect {


    @Autowired
    private RedisTemplate<String, Serializable> redisTemplate;

    @Autowired
    private DefaultRedisScript<Number> redisScript;

    @Around("execution(* com.sunlands.zlcx.datafix.web ..*(..) )")
    public Object interceptor(ProceedingJoinPoint joinPoint) throws Throwable {

        MethodSignature signature = (MethodSignature) joinPoint.getSignature();
        Method method = signature.getMethod();
        Class<?> targetClass = method.getDeclaringClass();
        RateLimiter rateLimit = method.getAnnotation(RateLimiter.class);

        if (rateLimit != null) {
            HttpServletRequest request = ((ServletRequestAttributes) RequestContextHolder.getRequestAttributes()).getRequest();
            String ipAddress = getIpAddr(request);

            StringBuffer stringBuffer = new StringBuffer();
            stringBuffer.append(ipAddress).append("-")
                    .append(targetClass.getName()).append("- ")
                    .append(method.getName()).append("-")
                    .append(rateLimit.key());

            List<String> keys = Collections.singletonList(stringBuffer.toString());

            Number number = redisTemplate.execute(redisScript, keys, rateLimit.count(), rateLimit.time());

            if (number != null && number.intValue() != 0 && number.intValue() <= rateLimit.count()) {
                log.info("限流时间段内访问第:{} 次", number.toString());
                return joinPoint.proceed();
            }

        } else {
            return joinPoint.proceed();
        }

        throw new RuntimeException("已经到设置限流次数");
    }

    public static String getIpAddr(HttpServletRequest request) {
        String ipAddress = null;
        try {
            ipAddress = request.getHeader("x-forwarded-for");
            if (ipAddress == null || ipAddress.length() == 0 || "unknown".equalsIgnoreCase(ipAddress)) {
                ipAddress = request.getHeader("Proxy-Client-IP");
            }
            if (ipAddress == null || ipAddress.length() == 0 || "unknown".equalsIgnoreCase(ipAddress)) {
                ipAddress = request.getHeader("WL-Proxy-Client-IP");
            }
            if (ipAddress == null || ipAddress.length() == 0 || "unknown".equalsIgnoreCase(ipAddress)) {
                ipAddress = request.getRemoteAddr();
            }
            // 对于通过多个代理的情况,第一个IP为客户端真实IP,多个IP按照','分割
            if (ipAddress != null && ipAddress.length() > 15) {
                // "***.***.***.***".length()= 15
                if (ipAddress.indexOf(",") > 0) {
                    ipAddress = ipAddress.substring(0, ipAddress.indexOf(","));
                }
            }
        } catch (Exception e) {
            ipAddress = "";
        }
        return ipAddress;
    }


}
控制层
@RestController
@Slf4j
@RequestMapping("limit")
public class RateLimiterController {

    @Autowired
    private RedisTemplate redisTemplate;

    @GetMapping(value = "/test")
    @RateLimiter(key = "test", time = 10, count = 1)
    public ResponseEntity<Object> test() {

        String date = DateFormatUtils.format(new Date(), "yyyy-MM-dd HH:mm:ss.SSS");
        RedisAtomicInteger limitCounter = new RedisAtomicInteger("limitCounter", redisTemplate.getConnectionFactory());
        String str = date + " 累计访问次数:" + limitCounter.getAndIncrement();
        log.info(str);
        return ResponseEntity.ok(str);
    }
}

启动项目进行测试

不断访问url http://127.0.0.1:8090/limit/test,效果如下:
image.png

image.png

我这里为了简单演示是直接抛了一个RuntimeException,实际可以单独定义一个如RateLimitException,在上层直接处理这种频次限制的异常,以友好的方式返回给用户。

【转载请注明出处】:https://developer.aliyun.com/article/758604

相关实践学习
基于Redis实现在线游戏积分排行榜
本场景将介绍如何基于Redis数据库实现在线游戏中的游戏玩家积分排行榜功能。
云数据库 Redis 版使用教程
云数据库Redis版是兼容Redis协议标准的、提供持久化的内存数据库服务,基于高可靠双机热备架构及可无缝扩展的集群架构,满足高读写性能场景及容量需弹性变配的业务需求。 产品详情:https://www.aliyun.com/product/kvstore &nbsp; &nbsp; ------------------------------------------------------------------------- 阿里云数据库体验:数据库上云实战 开发者云会免费提供一台带自建MySQL的源数据库&nbsp;ECS 实例和一台目标数据库&nbsp;RDS实例。跟着指引,您可以一步步实现将ECS自建数据库迁移到目标数据库RDS。 点击下方链接,领取免费ECS&amp;RDS资源,30分钟完成数据库上云实战!https://developer.aliyun.com/adc/scenario/51eefbd1894e42f6bb9acacadd3f9121?spm=a2c6h.13788135.J_3257954370.9.4ba85f24utseFl
相关文章
|
27天前
|
NoSQL Java Redis
太惨痛: Redis 分布式锁 5个大坑,又大又深, 如何才能 避开 ?
Redis分布式锁在高并发场景下是重要的技术手段,但其实现过程中常遇到五大深坑:**原子性问题**、**连接耗尽问题**、**锁过期问题**、**锁失效问题**以及**锁分段问题**。这些问题不仅影响系统的稳定性和性能,还可能导致数据不一致。尼恩在实际项目中总结了这些坑,并提供了详细的解决方案,包括使用Lua脚本保证原子性、设置合理的锁过期时间和使用看门狗机制、以及通过锁分段提升性能。这些经验和技巧对面试和实际开发都有很大帮助,值得深入学习和实践。
太惨痛: Redis 分布式锁 5个大坑,又大又深, 如何才能 避开 ?
|
3天前
|
NoSQL Redis
Redis分布式锁如何实现 ?
Redis分布式锁通过SETNX指令实现,确保仅在键不存在时设置值。此机制用于控制多个线程对共享资源的访问,避免并发冲突。然而,实际应用中需解决死锁、锁超时、归一化、可重入及阻塞等问题,以确保系统的稳定性和可靠性。解决方案包括设置锁超时、引入Watch Dog机制、使用ThreadLocal绑定加解锁操作、实现计数器支持可重入锁以及采用自旋锁思想处理阻塞请求。
33 16
|
1月前
|
缓存 NoSQL Java
大数据-50 Redis 分布式锁 乐观锁 Watch SETNX Lua Redisson分布式锁 Java实现分布式锁
大数据-50 Redis 分布式锁 乐观锁 Watch SETNX Lua Redisson分布式锁 Java实现分布式锁
55 3
大数据-50 Redis 分布式锁 乐观锁 Watch SETNX Lua Redisson分布式锁 Java实现分布式锁
|
28天前
|
NoSQL Redis 数据库
计数器 分布式锁 redis实现
【10月更文挑战第5天】
46 1
|
1月前
|
NoSQL 算法 关系型数据库
Redis分布式锁
【10月更文挑战第1天】分布式锁用于在多进程环境中保护共享资源,防止并发冲突。通常借助外部系统如Redis或Zookeeper实现。通过`SETNX`命令加锁,并设置过期时间防止死锁。为避免误删他人锁,加锁时附带唯一标识,解锁前验证。面对锁提前过期的问题,可使用守护线程自动续期。在Redis集群中,需考虑主从同步延迟导致的锁丢失问题,Redlock算法可提高锁的可靠性。
70 4
|
1月前
|
缓存 分布式计算 NoSQL
大数据-43 Redis 功能扩展 Lua 脚本 对Redis扩展 eval redis.call redis.pcall
大数据-43 Redis 功能扩展 Lua 脚本 对Redis扩展 eval redis.call redis.pcall
25 2
|
26天前
|
NoSQL Redis API
限流+共享session redis实现
【10月更文挑战第7天】
34 0
|
1月前
|
缓存 NoSQL 算法
面试题:Redis如何实现分布式锁!
面试题:Redis如何实现分布式锁!
|
1月前
|
消息中间件 缓存 NoSQL
Redis 是一个高性能的键值对存储系统,常用于缓存、消息队列和会话管理等场景。
【10月更文挑战第4天】Redis 是一个高性能的键值对存储系统,常用于缓存、消息队列和会话管理等场景。随着数据增长,有时需要将 Redis 数据导出以进行分析、备份或迁移。本文详细介绍几种导出方法:1)使用 Redis 命令与重定向;2)利用 Redis 的 RDB 和 AOF 持久化功能;3)借助第三方工具如 `redis-dump`。每种方法均附有示例代码,帮助你轻松完成数据导出任务。无论数据量大小,总有一款适合你。
69 6