来自波士顿的初创企业,正在利用AI技术颠覆工业质量检测体系

简介: Neurala公司联合创始人兼CEO Massimiliano Versace表示,“AI技术所具备的视觉识别能力,有望给整个制造业创造巨大价值。AI将这种能够与人类决策水平比肩的能力带入生产线,实现远超常规机器视觉系统的识别准确度。”

云栖号资讯:【点击查看更多行业资讯
在这里您可以找到不同行业的第一手的上云资讯,还在等什么,快来!

至顶网软件与服务频道消息:人工智能(AI)正风靡全球。需要强调的是,AI已经成为当下既被严重夸大、又被严重低估的技术成果之一。之所以说夸大,是因为当下几乎任何企业都想把“AI”字眼加进自己的产品当中。(个人认为在披萨烤箱里加进「AI」非常荒唐。)而之所以说低估,是因为大多数行业并没有真正理解AI技术所能带来的下一场革命。

Neurala公司对此有着自己的看法,该公司认为,AI将给制造业领域的机器检查技术带来巨大改进。Neurala公司联合创始人兼CEO Massimiliano Versace表示,“AI技术所具备的视觉识别能力,有望给整个制造业创造巨大价值。AI将这种能够与人类决策水平比肩的能力带入生产线,实现远超常规机器视觉系统的识别准确度。”

Neurala是一家来自波士顿的技术初创企业,致力于将AI引入计算机视觉检查领域。该公司成立于2006年,通过四轮融资筹得1600万美元。最近的一次是2017年1月的A轮融资,由Pelion Venture Partners领投,融资额为1400万美元。Neurala公司目前拥有50名员工。

该公司在核心业务在于开发专有神经网络技术(即Lifelong-Deep神经网络,简称Lifelong-DNN),意在进一步提升计算机视觉的性能水平。Lifelong-DNN最初专为美国宇航局的自动行星探测机器人所设计,其模拟人类大脑的观察与学习方式。与计算机视觉相结合,该技术能够实现对系统的快速连续训练,借此准确发现并标记存在缺陷的产品。Lifelong-DNN本身属于Neurala公司Brain Builder AI平台的组成部分。

Versace解释道,“对于大多数现有应用而言,常规的计算机视觉方案已经能够发挥很好的效果,例如在光滑的表面上寻找划痕。但其作用本质仍存在严重的局限性,也就是在相同当中找出不同。而在大多数实际应用场景中,我们根本无法满足机器视觉提出的标准化要求。”

就Versace个人而言,他从25年前就开始从事AI技术研究,并与DARPA及美国宇航局一道开发机器人与无人机。他曾参与过石油与天然气行业中的无人机设备检查项目,这段经历,也让他下定决心投身于利用视觉技术实现对消费级产品及OEM生产的质量控制。他表示,“近年来,制造业一直在以种种有趣的方式使用AI技术。我们将见证越来越多实际应用的诞生,并迎接AI驱动型制造业的全面腾飞。”

Neurala公司的人工智能系统,可以利用产品图片,来学习目标产品的外观。对于这类具备大量关于合格产品的数据,而不良产品数据相对有限的使用专题来说,计算机视觉技术可以说再合适不过了。Versace指出,“常规制造业就是这样,并不会保存太多不良产品的信息。以制药领域为例,他们要求系统完美运行,一切与预期相左的状态都属于异常。这意味着我们可以利用少量图像建立起「质量良好」这一基准概念,并拒绝一切与之冲突的产品表现。相关识别模型只需要短短几分钟就能设置完成。”

AI系统最强大的一点,在于持续学习能力。Versace解释道,“如果系统认为某款产品合格,但操作人员给出不同意见,系统就能从中学习新的经验。它会意识到自己遗漏了某些关键信息,借此完善数据集,推动系统能力的进一步提升。”

IHI Corporation作为全球最大的飞机发动机、汽车与工业涡轮增压器以及其他运输相关设备制造商之一,目前也成为Neurala公司的客户。IHI物联网项目部总经理Yukihiro Kawano表示,“在检测准确度与处理速度方面,我们发现Neurala的Brain Builder AI平台要远远优于其他标准视觉检测系统。Brain Builder能够利用AI技术,从图像中准确检测出特定对象类别。这是生成注释数据的关键,并可被用于确保该平台准确检测生产线制造出来的任何对象。”

这种对异常问题的实时识别能力不仅能够节约下大量资金,防止存在质量问题的产品被交付到客户手中,同时也让操作人员得以立即着手纠正问题。因此,IHI希望将这套系统推向更广泛的应用场景。Kawano指出,“展望未来,我们希望利用Brain Builder改善其他工厂的制造流程,包括借此快速识别并检测其他生产线中更为多样的产品对象。”

Neurala公司的发展愿景也正在于此。Versace表示,“我们正在切实证明AI技术在改善制造能力、解决异常问题并节约成本方面的实际效果。我们一直以月作为规划周期单位,目前也已经开始与制造业领域的多家知名大企业开展合作。”

他还抱有更大的雄心壮志。他总结道,“着眼于宏观经济层面,机器人与AI技术将帮助制造业重返美国,同时让制造类工作岗位变得更具吸引力。我知道很多人担心自己的工作被AI彻底取代,但如今的年轻人们已经习惯了同技术打交道,而且愿意不断学习。AI技术在完善整个制造业流程的同时,也将让我们的工人拥有更强大、更高效的生产能力。”

【云栖号在线课堂】每天都有产品技术专家分享!
课程地址:https://yqh.aliyun.com/zhibo

立即加入社群,与专家面对面,及时了解课程最新动态!
【云栖号在线课堂 社群】https://c.tb.cn/F3.Z8gvnK

原文发布时间:2020-03-28
本文作者:Jim Vinoski
本文来自:“至顶网”,了解相关信息可以关注“至顶网

相关文章
|
5天前
|
人工智能 自然语言处理 机器人
文档智能与RAG技术如何提升AI大模型的业务理解能力
随着人工智能的发展,AI大模型在自然语言处理中的应用日益广泛。文档智能和检索增强生成(RAG)技术的兴起,为模型更好地理解和适应特定业务场景提供了新方案。文档智能通过自动化提取和分析非结构化文档中的信息,提高工作效率和准确性。RAG结合检索机制和生成模型,利用外部知识库提高生成内容的相关性和准确性。两者的结合进一步增强了AI大模型的业务理解能力,助力企业数字化转型。
35 3
|
3天前
|
人工智能 文字识别 运维
AI多模态的5大核心关键技术,让高端制造实现智能化管理
结合大模型应用场景,通过AI技术解析高端制造业的复杂设备与文档数据,自动化地将大型零件、机械图纸、操作手册等文档结构化。核心技术包括版面识别、表格抽取、要素抽取和文档抽取,实现信息的系统化管理和高效查询,大幅提升设备维护和生产管理的效率。
|
10天前
|
人工智能 安全 测试技术
探索AI在软件开发中的应用:提升开发效率与质量
【10月更文挑战第31天】在快速发展的科技时代,人工智能(AI)已成为软件开发领域的重要组成部分。本文探讨了AI在代码生成、缺陷预测、自动化测试、性能优化和CI/CD中的应用,以及这些应用如何提升开发效率和产品质量。同时,文章也讨论了数据隐私、模型可解释性和技术更新等挑战。
|
13天前
|
机器学习/深度学习 人工智能 自然语言处理
思通数科AI平台在尽职调查中的技术解析与应用
思通数科AI多模态能力平台结合OCR、NLP和深度学习技术,为IPO尽职调查、融资等重要交易环节提供智能化解决方案。平台自动识别、提取并分类海量文档,实现高效数据核验与合规性检查,显著提升审查速度和精准度,同时保障敏感信息管理和数据安全。
62 11
|
7天前
|
机器学习/深度学习 人工智能 自然语言处理
自动化测试的新篇章:利用AI提升软件质量
【10月更文挑战第35天】在软件开发的海洋中,自动化测试犹如一艘救生艇,它帮助团队确保产品质量,同时减少人为错误。本文将探索如何通过集成人工智能(AI)技术,使自动化测试更加智能化,从而提升软件测试的效率和准确性。我们将从AI在测试用例生成、测试执行和结果分析中的应用出发,深入讨论AI如何重塑软件测试领域,并配以实际代码示例来说明这些概念。
34 3
|
8天前
|
人工智能 自然语言处理 算法
企业内训|AI/大模型/智能体的测评/评估技术-某电信运营商互联网研发中心
本课程是TsingtaoAI专为某电信运营商的互联网研发中心的AI算法工程师设计,已于近日在广州对客户团队完成交付。课程聚焦AI算法工程师在AI、大模型和智能体的测评/评估技术中的关键能力建设,深入探讨如何基于当前先进的AI、大模型与智能体技术,构建符合实际场景需求的科学测评体系。课程内容涵盖大模型及智能体的基础理论、测评集构建、评分标准、自动化与人工测评方法,以及特定垂直场景下的测评实战等方面。
44 4
|
8天前
|
机器学习/深度学习 人工智能 算法
基于AI的性能优化技术研究
基于AI的性能优化技术研究
|
12天前
|
机器学习/深度学习 人工智能 算法
AI技术在医疗健康领域的应用与挑战####
本文旨在探讨人工智能(AI)技术在医疗健康领域的创新应用及其面临的主要挑战。通过深入分析AI如何助力疾病诊断、治疗方案优化、患者管理及药物研发,本文揭示了AI技术在提升医疗服务质量、效率和可及性方面的巨大潜力。同时,文章也指出了数据隐私、伦理道德、技术局限性等关键问题,并提出了相应的解决策略和未来发展方向。本文为医疗从业者、研究者及政策制定者提供了对AI医疗技术的全面理解,促进了跨学科合作与创新。 ####
|
11天前
|
人工智能 算法
AI技术在医疗领域的应用及其挑战
【10月更文挑战第31天】本文将探讨AI技术在医疗领域的应用及其面临的挑战。我们将从AI技术的基本概念开始,然后详细介绍其在医疗领域的应用,包括疾病诊断、药物研发、患者护理等方面。最后,我们将讨论AI技术在医疗领域面临的挑战,如数据隐私、算法偏见等问题。
|
11天前
|
存储 人工智能 文字识别
AI与OCR:数字档案馆图像扫描与文字识别技术实现与项目案例
本文介绍了纸质档案数字化的技术流程,包括高精度扫描、图像预处理、自动边界检测与切割、文字与图片分离抽取、档案识别与文本提取,以及识别结果的自动保存。通过去噪、增强对比度、校正倾斜等预处理技术,提高图像质量,确保OCR识别的准确性。平台还支持多字体识别、批量处理和结构化存储,实现了高效、准确的档案数字化。具体应用案例显示,该技术在江西省某地质资料档案馆中显著提升了档案管理的效率和质量。

热门文章

最新文章