宫崎骏动画里的新垣结衣见过没?这个开源动漫生成器让你的照片秒变手绘日漫

简介: 随手拍张照片,顺势转换为宫崎骏、新海诚等日漫大师的手绘风格作品,这个专门生成动漫图像的 GAN,实测很好用。

云栖号资讯:【点击查看更多行业资讯
在这里您可以找到不同行业的第一手的上云资讯,还在等什么,快来!

随手拍张照片,顺势转换为宫崎骏、新海诚等日漫大师的手绘风格作品,这个专门生成动漫图像的 GAN,实测很好用。

image

机器之心根据真实店铺照片生成的效果图,一度以为,这就是某个日漫番剧的截图。

尽管最近 2019 年的图灵奖颁给了计算机图形学、颁给了皮克斯 3D 动画,但很多人可能认为二维动漫更有意思一些。像宫崎骏、新海诚这些大师手绘下的动漫,才有了灵魂,张张都能成为壁纸,而整个日漫也以二维为核心。

如果有模型能将真实画面转化为日漫风格的手绘画面,那一定非常炫酷。最近机器之心发现确实有这些模型,从 CartoonGAN 到 AnimeGAN 都能生成非常有意思的图像。

image

这里有一个 TensorFlow 新项目,它实现了 AnimeGAN,并提供了预训练模型。也就是说,我们下载后可以直接试试生成效果。作为日漫风格的爱好者,我们很快就试用了一下新项目。

项目地址:https://github.com/TachibanaYoshino/AnimeGAN

虽然原项目给出的优秀示例很多都是街景,但我们发现各种场景也都还行,如下是我们试用的原图与生成效果。看看第一张樱花道生成效果,忽然有一种《千与千寻》的感觉。

image

如果只针对人物,转换效果也是非常不错的。我们尝试将新垣结衣的照片输入 AnimeGAN 模型,然后就有如下这种神奇的画风,感觉直接用到动漫里也没什么问题了。

image

在原 GitHub 项目中,作者还给了非常多的示例,上面只是机器之心试用的结果,你也可以来用一用。

AnimeGAN

整个项目实现的是论文「AnimeGAN: a novel lightweight GAN for photo animation」中所提方法,作者在论文中分别将 AnimeGAN 与 CartoonGAN、ComixGAN 进行对比。

image

从图中可以看到,AnimeGAN 在细节方面的表现要优于以上两种方法,色彩相对而言更加自然,涂抹感也没有那么强烈。最明显的是第二行的效果图,使用 AnimeGAN 生成的漫画更加接近宫崎骏的画风。

方法简

对于这个项目的 AnimeGAN,如下所示为 AnimeGAN 所采用的生成器网络与判别器网络。看起来模型整体是比较常规地一个卷积神经网络,但它会采用实例归一化以及新型的 LReLU 激活函数。

image

除了架构细节上的更新外,作者还提出了以下三个新的损失函数:

  • 灰度风格(grayscale style)loss
  • 灰度对抗(grayscale adversarial)loss
  • 色彩重构(color reconstruction)loss

这些损失函数能够让生成图片的风格更加接近于真实的漫画风格。

下表比较了 ACartoonGAN 与 AnimeGAN 的模型大小与推理速度。可以明显看出,AnimeGAN 是个相对轻量级的 GAN,具有更少的参数量以及更快的推理速度。

image

总体来说,新提出来的 AnimeGAN 是一种轻量级的生成对抗模型,它采用了较少的模型参数,以及引入格拉姆矩阵(Gram matrix)来加强照片的风格。研究者的方法需要采用一系列真实图片与一系列动漫图片做训练,且这些图片并不需要成对匹配,这就表明训练数据非常容易获得。

项目实测

我们在 Ubuntu 18.04 下对本项目进行了测试,相关依赖环境如下:

  • python 3.6.8
  • tensorflow-gpu 1.8
  • opencv
  • tqdm
  • numpy
  • glob
  • argparse

这些依赖项可以说都是 CV 中常用的扩展库,我们就不用费尽心思去解决各种依赖环境冲突的问题了,这里给个好评。

以下是本项目的训练及测试详细流程。我们首先将 AnimeGAN 项目克隆到本地,在 Jupyter notebook 中输入:

!git clone https://github.com/TachibanaYoshino/AnimeGAN 

image

将工作目录切换到 AnimeGAN:

import os 
 
os.chdir('AnimeGAN') 
 
print(os.getcwd()) 

接下来下载项目作者提供的预训练模型,使用 vim download_staffs.sh 创建一个 Shell 文件,输入如下命令:

URL=https://github.com/TachibanaYoshino/AnimeGAN/releases/download/Haoyao-style_V1.0/Haoyao-style.zip 
 
ZIP_FILE=./checkpoint/Haoyao-style.zip 
 
TARGET_DIR=./checkpoint/saved_model 
 
mkdir -p ./checkpoint 
 
wget -N $URL -O $ZIP_FILE 
 
mkdir -p $TARGET_DIR 
 
unzip $ZIP_FILE -d $TARGET_DIR 
 
rm $ZIP_FILE 
 
DatesetURL=https://github.com/TachibanaYoshino/AnimeGAN/releases/download/dataset-1/dataset.zip 
 
ZIP_FILE=./dataset.zip 
 
TARGET_DIR=./dataset 
 
rm -rf dataset 
 
wget -N $DatesetURL -O $ZIP_FILE 
 
unzip $ZIP_FILE -d $TARGET_DIR 
 
rm $ZIP_FILE 
 
VGG_FILE=./vgg19_weight/vgg19.npy 
 
wget --load-cookies /tmp/cookies.txt "https://docs.google.com/uc?export=download&confirm=$(wget --quiet --save-cookies /tmp/cookies.txt --keep-session-cookies --no-check-certificate 'https://docs.google.com/uc?export=download&id=1U5HCRpZWAbDVLipNoF8t0ZHpwCRX7kdF' -O- | sed -rn 's/.*confirm=([0-9A-Za-z_]+).*/1n/p')&id=1U5HCRpZWAbDVLipNoF8t0ZHpwCRX7kdF" -O $VGG_FILE && rm -rf /tmp/cookies.txt 

保存后退出,以上命令会将预训练的模型、vgg19 权重以及训练数据集下载并保存到其对应目录下。在 notebook 中运行:

!bash download_staffs.sh 

image

至此即完成所有准备工作,运行如下代码就可以对模型进行训练了:

!python main.py --phase train --dataset Hayao --epoch 101 --init_epoch 1 

AnimeGAN 的训练过程如下图所示:

image

当进行测试时,我们需要将用于测试的图片保存到 dataset/test/real 目录下,并运行如下代码:

!python test.py --checkpoint_dir checkpoint/saved_model --test_dir dataset/test/real --style_name H 

image

当看到以上输出说明程序已经成功运行完成,生成结果保存在 results 文件夹下。可以看到,在 P100 GPU 上生成一幅图片需要大约 2.3 秒左右。

【云栖号在线课堂】每天都有产品技术专家分享!
课程地址:https://yqh.aliyun.com/zhibo

立即加入社群,与专家面对面,及时了解课程最新动态!
【云栖号在线课堂 社群】https://c.tb.cn/F3.Z8gvnK

原文发布时间:2020-03-26
本文作者:肖清、思
本文来自:“51CTO”,了解相关信息可以关注“51CTO

相关文章
|
6月前
如何实现换脸视频特效制作——三种换脸情况
如何实现换脸视频特效制作——三种换脸情况
179 1
|
1月前
Midjourney-03 收集Prompt 动漫风格 樱花 武士 魔法少女 自然 机甲 拟人动物 歌剧场景 星际飞船 神秘森林 精灵 详细记录 超多图片 多种风格 附带文本 关键词
Midjourney-03 收集Prompt 动漫风格 樱花 武士 魔法少女 自然 机甲 拟人动物 歌剧场景 星际飞船 神秘森林 精灵 详细记录 超多图片 多种风格 附带文本 关键词
21 0
|
4月前
动态人物抠图换背景 MediaPipe
动态人物抠图换背景 MediaPipe
|
人工智能 API 开发工具
调用百度API实现人像动漫化(C++)
调用百度API实现人像动漫化(C++)
119 0
|
人工智能
像相机一样变焦、填充画面细节,还能自定义风格,AI作画神器Midjourney又更新了
像相机一样变焦、填充画面细节,还能自定义风格,AI作画神器Midjourney又更新了
175 1
|
机器学习/深度学习 人工智能 PyTorch
神工鬼斧惟肖惟妙,M1 mac系统深度学习框架Pytorch的二次元动漫动画风格迁移滤镜AnimeGANv2+Ffmpeg(图片+视频)快速实践
前段时间,业界鼎鼎有名的动漫风格转化滤镜库AnimeGAN发布了最新的v2版本,一时间街谈巷议,风头无两。提起二次元,目前国内用户基数最大的无疑是抖音客户端,其内置的一款动画转换滤镜“变身漫画”,能够让用户在直播中,把自己的实际外貌转换为二次元“画风”。对于二次元粉丝来说,“打破次元壁,变身纸片人”这种自娱自乐方式可谓屡试不爽
神工鬼斧惟肖惟妙,M1 mac系统深度学习框架Pytorch的二次元动漫动画风格迁移滤镜AnimeGANv2+Ffmpeg(图片+视频)快速实践
|
iOS开发 MacOS Windows
Unity2D像素游戏开发——Aseprite简单人物绘画+动画制作导出精灵表示例
Unity2D像素游戏开发——Aseprite简单人物绘画+动画制作导出精灵表示例
657 0
Unity2D像素游戏开发——Aseprite简单人物绘画+动画制作导出精灵表示例
|
API 计算机视觉 Python
用Python实现美化照片———磨皮
如何用Python实现磨皮
560 0
用Python实现美化照片———磨皮
|
计算机视觉 Python
Python实现高级电影特效,CXK也能影分身
Python实现高级电影特效,CXK也能影分身
288 0
|
小程序 JavaScript 程序员
【开源】【猫咪卡通变 - 小程序】拍摄猫咪或上传猫咪照片,使其转化为卡通猫咪.(且上传图片必须为猫咪)
废话不多说,直接看吧! 涉及技术:微信小程序云开发 涉及API接口:百度云-图像增强、百度云-图像识别
319 0
【开源】【猫咪卡通变 - 小程序】拍摄猫咪或上传猫咪照片,使其转化为卡通猫咪.(且上传图片必须为猫咪)