HTAP数据库 PostgreSQL 场景与性能测试之 3.1 - (OLAP) 大表JOIN统计查询-10亿 join 1亿 agg-阿里云开发者社区

开发者社区> 数据库> 正文

HTAP数据库 PostgreSQL 场景与性能测试之 3.1 - (OLAP) 大表JOIN统计查询-10亿 join 1亿 agg

简介: 标签 PostgreSQL , HTAP , OLTP , OLAP , 场景与性能测试 背景 PostgreSQL是一个历史悠久的数据库,历史可以追溯到1973年,最早由2014计算机图灵奖得主,关系数据库的鼻祖Michael_Stonebraker 操刀设计,PostgreSQL具备与Oracle类似的功能、性能、架构以及稳定性。 PostgreSQL社区的贡献者众多

标签

PostgreSQL , HTAP , OLTP , OLAP , 场景与性能测试


背景

PostgreSQL是一个历史悠久的数据库,历史可以追溯到1973年,最早由2014计算机图灵奖得主,关系数据库的鼻祖Michael_Stonebraker 操刀设计,PostgreSQL具备与Oracle类似的功能、性能、架构以及稳定性。

pic

PostgreSQL社区的贡献者众多,来自全球各个行业,历经数年,PostgreSQL 每年发布一个大版本,以持久的生命力和稳定性著称。

2017年10月,PostgreSQL 推出10 版本,携带诸多惊天特性,目标是胜任OLAP和OLTP的HTAP混合场景的需求:

《最受开发者欢迎的HTAP数据库PostgreSQL 10特性》

1、多核并行增强

2、fdw 聚合下推

3、逻辑订阅

4、分区

5、金融级多副本

6、json、jsonb全文检索

7、还有插件化形式存在的特性,如 向量计算、JIT、SQL图计算、SQL流计算、分布式并行计算、时序处理、基因测序、化学分析、图像分析 等。

pic

在各种应用场景中都可以看到PostgreSQL的应用:

pic

PostgreSQL近年来的发展非常迅猛,从知名数据库评测网站dbranking的数据库评分趋势,可以看到PostgreSQL向上发展的趋势:

pic

从每年PostgreSQL中国召开的社区会议,也能看到同样的趋势,参与的公司越来越多,分享的公司越来越多,分享的主题越来越丰富,横跨了 传统企业、互联网、医疗、金融、国企、物流、电商、社交、车联网、共享XX、云、游戏、公共交通、航空、铁路、军工、培训、咨询服务等 行业。

接下来的一系列文章,将给大家介绍PostgreSQL的各种应用场景以及对应的性能指标。

环境

环境部署方法参考:

《PostgreSQL 10 + PostGIS + Sharding(pg_pathman) + MySQL(fdw外部表) on ECS 部署指南(适合新用户)》

阿里云 ECS:56核,224G,1.5TB*2 SSD云盘

操作系统:CentOS 7.4 x64

数据库版本:PostgreSQL 12

PS:ECS的CPU和IO性能相比物理机会打一定的折扣,可以按下降1倍性能来估算。跑物理主机可以按这里测试的性能乘以2来估算。

场景 - 大表JOIN统计查询 (OLAP)

1、背景

多张大表的JOIN,聚合分析。例如有一张用户表,一张业务日志表表示活跃用户的行为数据,按天分区。

用户表1亿条记录,每天1000万活跃用户,产生10亿行为数据。

根据用户行为join用户表,group 用户表的某些字段,生成用户画像。

2、设计

2张表,1张1亿,uid为主键。1张10亿,订单号为主键,uid关联第一张表。

3、准备测试表

create unlogged table t_user (uid int8, info text, c1 int, c2 int, c3 int, crt_time timestamp);  
  
create unlogged table t_user_log_20191212(id int8, uid int8, info text, crt_time timestamp);  

4、准备测试函数(可选)

5、准备测试数据

insert into t_user select generate_series(1,100000000), md5(random()::text), random()*10, random()*100, random()*1000, now();  
  
insert into t_user_log_20191212 select generate_series(1,1000000000), random()*10000000, md5(random()::text), now();  

空间占用分别为8.8GB, 87GB:

postgres=# \dt+ t_user  
                     List of relations  
 Schema |  Name  | Type  |  Owner   |  Size   | Description   
--------+--------+-------+----------+---------+-------------  
 public | t_user | table | postgres | 8880 MB |   
(1 row)  
  
postgres=# \dt+ t_user_log_20191212   
                           List of relations  
 Schema |        Name         | Type  |  Owner   | Size  | Description   
--------+---------------------+-------+----------+-------+-------------  
 public | t_user_log_20191212 | table | postgres | 87 GB |   
(1 row)  

6、准备测试脚本

7、测试

alter table t_user set (parallel_workers =64);  
alter table t_user_log_20191212 set (parallel_workers =64);  
  
set max_parallel_workers=128;  
set max_parallel_workers_per_gather =32;  
set min_parallel_table_scan_size =0;  
set min_parallel_index_scan_size =0;  
set parallel_setup_cost =0;  
set parallel_tuple_cost =0;  
set jit=on;
  
set parallel_leader_participation =off;  
set enable_sort =off;  
set work_mem='64MB';  
  
explain (analyze,verbose,timing,costs,buffers) select c1,count(*) from t_user join t_user_log_20191212 using (uid) group by c1;  
  
select t1.c1,count(*) from t_user t1 join t_user_log_20191212 t2 using (uid) group by c1;  

8、测试结果

postgres=#       explain  select c1,count(*) from t_user join t_user_log_20191212 using (uid) group by c1;
                                                    QUERY PLAN                                                    
------------------------------------------------------------------------------------------------------------------
 Finalize HashAggregate  (cost=13518803.57..13518803.68 rows=11 width=12)
   Group Key: t_user.c1
   ->  Gather  (cost=13518801.70..13518801.81 rows=352 width=12)
         Workers Planned: 32
         ->  Partial HashAggregate  (cost=13518801.70..13518801.81 rows=11 width=12)
               Group Key: t_user.c1
               ->  Parallel Hash Join  (cost=1221935.52..13362551.69 rows=31250002 width=4)
                     Hash Cond: (t_user_log_20191212.uid = t_user.uid)
                     ->  Parallel Seq Scan on t_user_log_20191212  (cost=0.00..11676137.02 rows=31250002 width=8)
                     ->  Parallel Hash  (cost=1167614.01..1167614.01 rows=3125001 width=12)
                           ->  Parallel Seq Scan on t_user  (cost=0.00..1167614.01 rows=3125001 width=12)
 JIT:
   Functions: 20
   Options: Inlining true, Optimization true, Expressions true, Deforming true
(14 rows)

postgres=# select c1,count(*) from t_user join t_user_log_20191212 using (uid) group by c1;
 c1 |   count   
----+-----------
  8 | 100163144
  7 |  99799644
 10 |  50012738
  9 | 100095291
  1 |  99945550
  5 |  99818748
  4 |  99862794
  2 | 100080723
  0 |  50167364
  6 |  99907094
  3 | 100146857
(11 rows)

Time: 46214.349 ms (00:46.214)

TPS: xx

响应时间: 46 秒

不开并行和jit的话,耗时735秒,相差16倍。

参考

《PostgreSQL、Greenplum 应用案例宝典《如来神掌》 - 目录》

《数据库选型之 - 大象十八摸 - 致 架构师、开发者》

《PostgreSQL 使用 pgbench 测试 sysbench 相关case》

《数据库界的华山论剑 tpc.org》

https://www.postgresql.org/docs/10/static/pgbench.html

 

免费领取阿里云RDS PostgreSQL实例、ECS虚拟机

版权声明:如果您发现本社区中有涉嫌抄袭的内容,欢迎发送邮件至:developerteam@list.alibaba-inc.com 进行举报,并提供相关证据,一经查实,本社区将立刻删除涉嫌侵权内容。

分享:
+ 订阅

分享数据库前沿,解构实战干货,推动数据库技术变革

其他文章