HTAP数据库 PostgreSQL 场景与性能测试之 3.1 - (OLAP) 大表JOIN统计查询-10亿 join 1亿 agg

本文涉及的产品
云原生数据库 PolarDB MySQL 版,通用型 2核4GB 50GB
云原生数据库 PolarDB PostgreSQL 版,标准版 2核4GB 50GB
性能测试 PTS,5000VUM额度
简介: 标签 PostgreSQL , HTAP , OLTP , OLAP , 场景与性能测试 背景 PostgreSQL是一个历史悠久的数据库,历史可以追溯到1973年,最早由2014计算机图灵奖得主,关系数据库的鼻祖Michael_Stonebraker 操刀设计,PostgreSQL具备与Oracle类似的功能、性能、架构以及稳定性。 PostgreSQL社区的贡献者众多

标签

PostgreSQL , HTAP , OLTP , OLAP , 场景与性能测试


背景

PostgreSQL是一个历史悠久的数据库,历史可以追溯到1973年,最早由2014计算机图灵奖得主,关系数据库的鼻祖Michael_Stonebraker 操刀设计,PostgreSQL具备与Oracle类似的功能、性能、架构以及稳定性。

pic

PostgreSQL社区的贡献者众多,来自全球各个行业,历经数年,PostgreSQL 每年发布一个大版本,以持久的生命力和稳定性著称。

2017年10月,PostgreSQL 推出10 版本,携带诸多惊天特性,目标是胜任OLAP和OLTP的HTAP混合场景的需求:

《最受开发者欢迎的HTAP数据库PostgreSQL 10特性》

1、多核并行增强

2、fdw 聚合下推

3、逻辑订阅

4、分区

5、金融级多副本

6、json、jsonb全文检索

7、还有插件化形式存在的特性,如 向量计算、JIT、SQL图计算、SQL流计算、分布式并行计算、时序处理、基因测序、化学分析、图像分析 等。

pic

在各种应用场景中都可以看到PostgreSQL的应用:

pic

PostgreSQL近年来的发展非常迅猛,从知名数据库评测网站dbranking的数据库评分趋势,可以看到PostgreSQL向上发展的趋势:

pic

从每年PostgreSQL中国召开的社区会议,也能看到同样的趋势,参与的公司越来越多,分享的公司越来越多,分享的主题越来越丰富,横跨了 传统企业、互联网、医疗、金融、国企、物流、电商、社交、车联网、共享XX、云、游戏、公共交通、航空、铁路、军工、培训、咨询服务等 行业。

接下来的一系列文章,将给大家介绍PostgreSQL的各种应用场景以及对应的性能指标。

环境

环境部署方法参考:

《PostgreSQL 10 + PostGIS + Sharding(pg_pathman) + MySQL(fdw外部表) on ECS 部署指南(适合新用户)》

阿里云 ECS:56核,224G,1.5TB*2 SSD云盘

操作系统:CentOS 7.4 x64

数据库版本:PostgreSQL 12

PS:ECS的CPU和IO性能相比物理机会打一定的折扣,可以按下降1倍性能来估算。跑物理主机可以按这里测试的性能乘以2来估算。

场景 - 大表JOIN统计查询 (OLAP)

1、背景

多张大表的JOIN,聚合分析。例如有一张用户表,一张业务日志表表示活跃用户的行为数据,按天分区。

用户表1亿条记录,每天1000万活跃用户,产生10亿行为数据。

根据用户行为join用户表,group 用户表的某些字段,生成用户画像。

2、设计

2张表,1张1亿,uid为主键。1张10亿,订单号为主键,uid关联第一张表。

3、准备测试表

create unlogged table t_user (uid int8, info text, c1 int, c2 int, c3 int, crt_time timestamp);  
  
create unlogged table t_user_log_20191212(id int8, uid int8, info text, crt_time timestamp);  

4、准备测试函数(可选)

5、准备测试数据

insert into t_user select generate_series(1,100000000), md5(random()::text), random()*10, random()*100, random()*1000, now();  
  
insert into t_user_log_20191212 select generate_series(1,1000000000), random()*10000000, md5(random()::text), now();  

空间占用分别为8.8GB, 87GB:

postgres=# \dt+ t_user  
                     List of relations  
 Schema |  Name  | Type  |  Owner   |  Size   | Description   
--------+--------+-------+----------+---------+-------------  
 public | t_user | table | postgres | 8880 MB |   
(1 row)  
  
postgres=# \dt+ t_user_log_20191212   
                           List of relations  
 Schema |        Name         | Type  |  Owner   | Size  | Description   
--------+---------------------+-------+----------+-------+-------------  
 public | t_user_log_20191212 | table | postgres | 87 GB |   
(1 row)  

6、准备测试脚本

7、测试

alter table t_user set (parallel_workers =64);  
alter table t_user_log_20191212 set (parallel_workers =64);  
  
set max_parallel_workers=128;  
set max_parallel_workers_per_gather =32;  
set min_parallel_table_scan_size =0;  
set min_parallel_index_scan_size =0;  
set parallel_setup_cost =0;  
set parallel_tuple_cost =0;  
set jit=on;
  
set parallel_leader_participation =off;  
set enable_sort =off;  
set work_mem='64MB';  
  
explain (analyze,verbose,timing,costs,buffers) select c1,count(*) from t_user join t_user_log_20191212 using (uid) group by c1;  
  
select t1.c1,count(*) from t_user t1 join t_user_log_20191212 t2 using (uid) group by c1;  

8、测试结果

postgres=#       explain  select c1,count(*) from t_user join t_user_log_20191212 using (uid) group by c1;
                                                    QUERY PLAN                                                    
------------------------------------------------------------------------------------------------------------------
 Finalize HashAggregate  (cost=13518803.57..13518803.68 rows=11 width=12)
   Group Key: t_user.c1
   ->  Gather  (cost=13518801.70..13518801.81 rows=352 width=12)
         Workers Planned: 32
         ->  Partial HashAggregate  (cost=13518801.70..13518801.81 rows=11 width=12)
               Group Key: t_user.c1
               ->  Parallel Hash Join  (cost=1221935.52..13362551.69 rows=31250002 width=4)
                     Hash Cond: (t_user_log_20191212.uid = t_user.uid)
                     ->  Parallel Seq Scan on t_user_log_20191212  (cost=0.00..11676137.02 rows=31250002 width=8)
                     ->  Parallel Hash  (cost=1167614.01..1167614.01 rows=3125001 width=12)
                           ->  Parallel Seq Scan on t_user  (cost=0.00..1167614.01 rows=3125001 width=12)
 JIT:
   Functions: 20
   Options: Inlining true, Optimization true, Expressions true, Deforming true
(14 rows)

postgres=# select c1,count(*) from t_user join t_user_log_20191212 using (uid) group by c1;
 c1 |   count   
----+-----------
  8 | 100163144
  7 |  99799644
 10 |  50012738
  9 | 100095291
  1 |  99945550
  5 |  99818748
  4 |  99862794
  2 | 100080723
  0 |  50167364
  6 |  99907094
  3 | 100146857
(11 rows)

Time: 46214.349 ms (00:46.214)

TPS: xx

响应时间: 46 秒

不开并行和jit的话,耗时735秒,相差16倍。

参考

《PostgreSQL、Greenplum 应用案例宝典《如来神掌》 - 目录》

《数据库选型之 - 大象十八摸 - 致 架构师、开发者》

《PostgreSQL 使用 pgbench 测试 sysbench 相关case》

《数据库界的华山论剑 tpc.org》

https://www.postgresql.org/docs/10/static/pgbench.html

 

免费领取阿里云RDS PostgreSQL实例、ECS虚拟机

相关实践学习
使用PolarDB和ECS搭建门户网站
本场景主要介绍基于PolarDB和ECS实现搭建门户网站。
阿里云数据库产品家族及特性
阿里云智能数据库产品团队一直致力于不断健全产品体系,提升产品性能,打磨产品功能,从而帮助客户实现更加极致的弹性能力、具备更强的扩展能力、并利用云设施进一步降低企业成本。以云原生+分布式为核心技术抓手,打造以自研的在线事务型(OLTP)数据库Polar DB和在线分析型(OLAP)数据库Analytic DB为代表的新一代企业级云原生数据库产品体系, 结合NoSQL数据库、数据库生态工具、云原生智能化数据库管控平台,为阿里巴巴经济体以及各个行业的企业客户和开发者提供从公共云到混合云再到私有云的完整解决方案,提供基于云基础设施进行数据从处理、到存储、再到计算与分析的一体化解决方案。本节课带你了解阿里云数据库产品家族及特性。
目录
相关文章
|
4月前
|
安全 关系型数据库 MySQL
MySQL数据库高效秘籍:10个小技巧,让你轻松应对各种场景!
【8月更文挑战第25天】本文介绍了十个提升MySQL数据库效率与安全性的实用技巧。涵盖查询性能分析、索引优化、慢查询日志利用、图形化工具如MySQL Workbench的应用、性能分析工具、主从复制实现、备份与恢复策略、数据库迁移方法及安全性保障等多个方面。通过具体的示例代码展示每个技巧的实际操作方式,帮助读者深入理解并有效运用MySQL数据库。
249 0
|
2月前
|
存储 Oracle 关系型数据库
Oracle数据库的应用场景有哪些?
【10月更文挑战第15天】Oracle数据库的应用场景有哪些?
200 64
|
4月前
|
SQL NoSQL 关系型数据库
实时数仓Hologres发展问题之实时数仓的类数据库化与HTAP数据库的差异如何解决
实时数仓Hologres发展问题之实时数仓的类数据库化与HTAP数据库的差异如何解决
62 2
|
1月前
|
架构师 数据库
大厂面试高频:数据库乐观锁的实现原理、以及应用场景
数据库乐观锁是必知必会的技术栈,也是大厂面试高频,十分重要,本文解析数据库乐观锁。关注【mikechen的互联网架构】,10年+BAT架构经验分享。
大厂面试高频:数据库乐观锁的实现原理、以及应用场景
|
2月前
|
供应链 数据库
数据库事务安全性控制有什么应用场景吗
【10月更文挑战第15天】数据库事务安全性控制有什么应用场景吗
|
3月前
|
存储 SQL 关系型数据库
一篇文章搞懂MySQL的分库分表,从拆分场景、目标评估、拆分方案、不停机迁移、一致性补偿等方面详细阐述MySQL数据库的分库分表方案
MySQL如何进行分库分表、数据迁移?从相关概念、使用场景、拆分方式、分表字段选择、数据一致性校验等角度阐述MySQL数据库的分库分表方案。
527 15
一篇文章搞懂MySQL的分库分表,从拆分场景、目标评估、拆分方案、不停机迁移、一致性补偿等方面详细阐述MySQL数据库的分库分表方案
|
3月前
|
JavaScript 前端开发 数据库
数据库测试场景实践总结
本文介绍了数据库超时和应用锁表SSDB测试场景的验证方法,通过锁定数据表模拟写入失败情况,并利用SSDB进行重试。测试需开发人员配合验证功能。同时,提供了SSDB服务器登录、查询队列数量及重启服务等常用命令。适用于验证和解决数据库写入问题。
42 7
|
4月前
|
关系型数据库 OLAP 分布式数据库
揭秘Polardb与OceanBase:从OLTP到OLAP,你的业务选对数据库了吗?热点技术对比,激发你的选择好奇心!
【8月更文挑战第22天】在数据库领域,阿里巴巴的Polardb与OceanBase各具特色。Polardb采用共享存储架构,分离计算与存储,适配高并发OLTP场景,如电商交易;OceanBase利用灵活的分布式架构,优化数据分布与处理,擅长OLAP分析及大规模数据管理。选择时需考量业务特性——Polardb适合事务密集型应用,而OceanBase则为数据分析提供强大支持。
1339 2
|
4月前
|
SQL 分布式计算 调度
实时数仓 Hologres操作报错合集之在与PostgreSOL数据库进行通信时出现报错,如何解决
实时数仓Hologres是阿里云推出的一款高性能、实时分析的数据库服务,专为大数据分析和复杂查询场景设计。使用Hologres,企业能够打破传统数据仓库的延迟瓶颈,实现数据到决策的无缝衔接,加速业务创新和响应速度。以下是Hologres产品的一些典型使用场景合集。
|
4月前
|
存储 Serverless API
Serverless 架构实现弹幕场景问题之在initializer方法中初始化数据库实例如何解决
Serverless 架构实现弹幕场景问题之在initializer方法中初始化数据库实例如何解决
33 0