HTAP数据库 PostgreSQL 场景与性能测试之 3.1 - (OLAP) 大表JOIN统计查询-10亿 join 1亿 agg

本文涉及的产品
云原生数据仓库AnalyticDB MySQL版,基础版 8ACU 100GB 1个月
云原生数据库 PolarDB PostgreSQL 版,标准版 2核4GB 50GB
云原生数据库 PolarDB MySQL 版,通用型 2核8GB 50GB
简介: 标签 PostgreSQL , HTAP , OLTP , OLAP , 场景与性能测试 背景 PostgreSQL是一个历史悠久的数据库,历史可以追溯到1973年,最早由2014计算机图灵奖得主,关系数据库的鼻祖Michael_Stonebraker 操刀设计,PostgreSQL具备与Oracle类似的功能、性能、架构以及稳定性。 PostgreSQL社区的贡献者众多

标签

PostgreSQL , HTAP , OLTP , OLAP , 场景与性能测试


背景

PostgreSQL是一个历史悠久的数据库,历史可以追溯到1973年,最早由2014计算机图灵奖得主,关系数据库的鼻祖Michael_Stonebraker 操刀设计,PostgreSQL具备与Oracle类似的功能、性能、架构以及稳定性。

pic

PostgreSQL社区的贡献者众多,来自全球各个行业,历经数年,PostgreSQL 每年发布一个大版本,以持久的生命力和稳定性著称。

2017年10月,PostgreSQL 推出10 版本,携带诸多惊天特性,目标是胜任OLAP和OLTP的HTAP混合场景的需求:

《最受开发者欢迎的HTAP数据库PostgreSQL 10特性》

1、多核并行增强

2、fdw 聚合下推

3、逻辑订阅

4、分区

5、金融级多副本

6、json、jsonb全文检索

7、还有插件化形式存在的特性,如 向量计算、JIT、SQL图计算、SQL流计算、分布式并行计算、时序处理、基因测序、化学分析、图像分析 等。

pic

在各种应用场景中都可以看到PostgreSQL的应用:

pic

PostgreSQL近年来的发展非常迅猛,从知名数据库评测网站dbranking的数据库评分趋势,可以看到PostgreSQL向上发展的趋势:

pic

从每年PostgreSQL中国召开的社区会议,也能看到同样的趋势,参与的公司越来越多,分享的公司越来越多,分享的主题越来越丰富,横跨了 传统企业、互联网、医疗、金融、国企、物流、电商、社交、车联网、共享XX、云、游戏、公共交通、航空、铁路、军工、培训、咨询服务等 行业。

接下来的一系列文章,将给大家介绍PostgreSQL的各种应用场景以及对应的性能指标。

环境

环境部署方法参考:

《PostgreSQL 10 + PostGIS + Sharding(pg_pathman) + MySQL(fdw外部表) on ECS 部署指南(适合新用户)》

阿里云 ECS:56核,224G,1.5TB*2 SSD云盘

操作系统:CentOS 7.4 x64

数据库版本:PostgreSQL 12

PS:ECS的CPU和IO性能相比物理机会打一定的折扣,可以按下降1倍性能来估算。跑物理主机可以按这里测试的性能乘以2来估算。

场景 - 大表JOIN统计查询 (OLAP)

1、背景

多张大表的JOIN,聚合分析。例如有一张用户表,一张业务日志表表示活跃用户的行为数据,按天分区。

用户表1亿条记录,每天1000万活跃用户,产生10亿行为数据。

根据用户行为join用户表,group 用户表的某些字段,生成用户画像。

2、设计

2张表,1张1亿,uid为主键。1张10亿,订单号为主键,uid关联第一张表。

3、准备测试表

create unlogged table t_user (uid int8, info text, c1 int, c2 int, c3 int, crt_time timestamp);  
  
create unlogged table t_user_log_20191212(id int8, uid int8, info text, crt_time timestamp);  

4、准备测试函数(可选)

5、准备测试数据

insert into t_user select generate_series(1,100000000), md5(random()::text), random()*10, random()*100, random()*1000, now();  
  
insert into t_user_log_20191212 select generate_series(1,1000000000), random()*10000000, md5(random()::text), now();  

空间占用分别为8.8GB, 87GB:

postgres=# \dt+ t_user  
                     List of relations  
 Schema |  Name  | Type  |  Owner   |  Size   | Description   
--------+--------+-------+----------+---------+-------------  
 public | t_user | table | postgres | 8880 MB |   
(1 row)  
  
postgres=# \dt+ t_user_log_20191212   
                           List of relations  
 Schema |        Name         | Type  |  Owner   | Size  | Description   
--------+---------------------+-------+----------+-------+-------------  
 public | t_user_log_20191212 | table | postgres | 87 GB |   
(1 row)  

6、准备测试脚本

7、测试

alter table t_user set (parallel_workers =64);  
alter table t_user_log_20191212 set (parallel_workers =64);  
  
set max_parallel_workers=128;  
set max_parallel_workers_per_gather =32;  
set min_parallel_table_scan_size =0;  
set min_parallel_index_scan_size =0;  
set parallel_setup_cost =0;  
set parallel_tuple_cost =0;  
set jit=on;
  
set parallel_leader_participation =off;  
set enable_sort =off;  
set work_mem='64MB';  
  
explain (analyze,verbose,timing,costs,buffers) select c1,count(*) from t_user join t_user_log_20191212 using (uid) group by c1;  
  
select t1.c1,count(*) from t_user t1 join t_user_log_20191212 t2 using (uid) group by c1;  

8、测试结果

postgres=#       explain  select c1,count(*) from t_user join t_user_log_20191212 using (uid) group by c1;
                                                    QUERY PLAN                                                    
------------------------------------------------------------------------------------------------------------------
 Finalize HashAggregate  (cost=13518803.57..13518803.68 rows=11 width=12)
   Group Key: t_user.c1
   ->  Gather  (cost=13518801.70..13518801.81 rows=352 width=12)
         Workers Planned: 32
         ->  Partial HashAggregate  (cost=13518801.70..13518801.81 rows=11 width=12)
               Group Key: t_user.c1
               ->  Parallel Hash Join  (cost=1221935.52..13362551.69 rows=31250002 width=4)
                     Hash Cond: (t_user_log_20191212.uid = t_user.uid)
                     ->  Parallel Seq Scan on t_user_log_20191212  (cost=0.00..11676137.02 rows=31250002 width=8)
                     ->  Parallel Hash  (cost=1167614.01..1167614.01 rows=3125001 width=12)
                           ->  Parallel Seq Scan on t_user  (cost=0.00..1167614.01 rows=3125001 width=12)
 JIT:
   Functions: 20
   Options: Inlining true, Optimization true, Expressions true, Deforming true
(14 rows)

postgres=# select c1,count(*) from t_user join t_user_log_20191212 using (uid) group by c1;
 c1 |   count   
----+-----------
  8 | 100163144
  7 |  99799644
 10 |  50012738
  9 | 100095291
  1 |  99945550
  5 |  99818748
  4 |  99862794
  2 | 100080723
  0 |  50167364
  6 |  99907094
  3 | 100146857
(11 rows)

Time: 46214.349 ms (00:46.214)

TPS: xx

响应时间: 46 秒

不开并行和jit的话,耗时735秒,相差16倍。

参考

《PostgreSQL、Greenplum 应用案例宝典《如来神掌》 - 目录》

《数据库选型之 - 大象十八摸 - 致 架构师、开发者》

《PostgreSQL 使用 pgbench 测试 sysbench 相关case》

《数据库界的华山论剑 tpc.org》

https://www.postgresql.org/docs/10/static/pgbench.html

 

免费领取阿里云RDS PostgreSQL实例、ECS虚拟机

相关实践学习
使用PolarDB和ECS搭建门户网站
本场景主要介绍如何基于PolarDB和ECS实现搭建门户网站。
阿里云数据库产品家族及特性
阿里云智能数据库产品团队一直致力于不断健全产品体系,提升产品性能,打磨产品功能,从而帮助客户实现更加极致的弹性能力、具备更强的扩展能力、并利用云设施进一步降低企业成本。以云原生+分布式为核心技术抓手,打造以自研的在线事务型(OLTP)数据库Polar DB和在线分析型(OLAP)数据库Analytic DB为代表的新一代企业级云原生数据库产品体系, 结合NoSQL数据库、数据库生态工具、云原生智能化数据库管控平台,为阿里巴巴经济体以及各个行业的企业客户和开发者提供从公共云到混合云再到私有云的完整解决方案,提供基于云基础设施进行数据从处理、到存储、再到计算与分析的一体化解决方案。本节课带你了解阿里云数据库产品家族及特性。
目录
相关文章
|
3月前
|
关系型数据库 MySQL 分布式数据库
阿里云PolarDB云原生数据库收费价格:MySQL和PostgreSQL详细介绍
阿里云PolarDB兼容MySQL、PostgreSQL及Oracle语法,支持集中式与分布式架构。标准版2核4G年费1116元起,企业版最高性能达4核16G,支持HTAP与多级高可用,广泛应用于金融、政务、互联网等领域,TCO成本降低50%。
|
3月前
|
关系型数据库 MySQL 数据库
阿里云数据库RDS费用价格:MySQL、SQL Server、PostgreSQL和MariaDB引擎收费标准
阿里云RDS数据库支持MySQL、SQL Server、PostgreSQL、MariaDB,多种引擎优惠上线!MySQL倚天版88元/年,SQL Server 2核4G仅299元/年,PostgreSQL 227元/年起。高可用、可弹性伸缩,安全稳定。详情见官网活动页。
|
3月前
|
关系型数据库 分布式数据库 数据库
阿里云数据库收费价格:MySQL、PostgreSQL、SQL Server和MariaDB引擎费用整理
阿里云数据库提供多种类型,包括关系型与NoSQL,主流如PolarDB、RDS MySQL/PostgreSQL、Redis等。价格低至21元/月起,支持按需付费与优惠套餐,适用于各类应用场景。
|
3月前
|
关系型数据库 MySQL 数据库
阿里云数据库RDS支持MySQL、SQL Server、PostgreSQL和MariaDB引擎
阿里云数据库RDS支持MySQL、SQL Server、PostgreSQL和MariaDB引擎,提供高性价比、稳定安全的云数据库服务,适用于多种行业与业务场景。
|
3月前
|
存储 人工智能 关系型数据库
阿里云AnalyticDB for PostgreSQL 入选VLDB 2025:统一架构破局HTAP,Beam+Laser引擎赋能Data+AI融合新范式
在数据驱动与人工智能深度融合的时代,企业对数据仓库的需求早已超越“查得快”这一基础能力。面对传统数仓挑战,阿里云瑶池数据库AnalyticDB for PostgreSQL(简称ADB-PG)创新性地构建了统一架构下的Shared-Nothing与Shared-Storage双模融合体系,并自主研发Beam混合存储引擎与Laser向量化执行引擎,全面解决HTAP场景下性能、弹性、成本与实时性的矛盾。 近日,相关研究成果发表于在英国伦敦召开的数据库领域顶级会议 VLDB 2025,标志着中国自研云数仓技术再次登上国际舞台。
344 0
|
5月前
|
数据采集 算法 数据安全/隐私保护
【硬件测试】基于FPGA的4ASK+帧同步系统开发与硬件片内测试,包含高斯信道,误码统计,可设置SNR
本文为基于FPGA的4-ASK调制与帧同步系统硬件测试版,采用Verilog实现,包含ILA在线采集与VIO SNR设置模块,支持高斯信道误码统计,适用于通信系统教学与实践。
94 2
|
4月前
|
存储 关系型数据库 数据库
【赵渝强老师】PostgreSQL数据库的WAL日志与数据写入的过程
PostgreSQL中的WAL(预写日志)是保证数据完整性的关键技术。在数据修改前,系统会先将日志写入WAL,确保宕机时可通过日志恢复数据。它减少了磁盘I/O,提升了性能,并支持手动切换日志文件。WAL文件默认存储在pg_wal目录下,采用16进制命名规则。此外,PostgreSQL提供pg_waldump工具解析日志内容。
335 0
|
6月前
|
存储 关系型数据库 分布式数据库
【赵渝强老师】基于PostgreSQL的分布式数据库:Citus
Citus 是基于 PostgreSQL 的开源分布式数据库,采用 shared nothing 架构,具备良好的扩展性。它以插件形式集成,部署简单,适用于处理大规模数据和高并发场景。本文介绍了 Citus 的基础概念、安装配置步骤及其在单机环境下的集群搭建方法。
485 2
|
2月前
|
存储 人工智能 OLAP
AI Agent越用越笨?阿里云AnalyticDB「AI上下文工程」一招破解!
AI 上下文工程是管理大模型输入信息的系统化框架,解决提示工程中的幻觉、上下文溢出与信息冲突等问题。通过上下文的采集、存储、加工与调度,提升AI推理准确性与交互体验。AnalyticDB PostgreSQL 版提供增强 RAG、长记忆、Supabase 等能力,助力企业构建高效、稳定的 AI 应用。
|
5月前
|
运维 算法 机器人
阿里云AnalyticDB具身智能方案:破解机器人仿真数据、算力与运维之困
本文将介绍阿里云瑶池旗下的云原生数据仓库AnalyticDB MySQL推出的全托管云上仿真解决方案,方案采用云原生架构,为开发者提供从开发环境、仿真计算到数据管理的全链路支持。

推荐镜像

更多