HTAP数据库 PostgreSQL 场景与性能测试之 3.1 - (OLAP) 大表JOIN统计查询-10亿 join 1亿 agg

本文涉及的产品
云原生数据库 PolarDB MySQL 版,Serverless 5000PCU 100GB
简介: 标签 PostgreSQL , HTAP , OLTP , OLAP , 场景与性能测试 背景 PostgreSQL是一个历史悠久的数据库,历史可以追溯到1973年,最早由2014计算机图灵奖得主,关系数据库的鼻祖Michael_Stonebraker 操刀设计,PostgreSQL具备与Oracle类似的功能、性能、架构以及稳定性。 PostgreSQL社区的贡献者众多

标签

PostgreSQL , HTAP , OLTP , OLAP , 场景与性能测试


背景

PostgreSQL是一个历史悠久的数据库,历史可以追溯到1973年,最早由2014计算机图灵奖得主,关系数据库的鼻祖Michael_Stonebraker 操刀设计,PostgreSQL具备与Oracle类似的功能、性能、架构以及稳定性。

pic

PostgreSQL社区的贡献者众多,来自全球各个行业,历经数年,PostgreSQL 每年发布一个大版本,以持久的生命力和稳定性著称。

2017年10月,PostgreSQL 推出10 版本,携带诸多惊天特性,目标是胜任OLAP和OLTP的HTAP混合场景的需求:

《最受开发者欢迎的HTAP数据库PostgreSQL 10特性》

1、多核并行增强

2、fdw 聚合下推

3、逻辑订阅

4、分区

5、金融级多副本

6、json、jsonb全文检索

7、还有插件化形式存在的特性,如 向量计算、JIT、SQL图计算、SQL流计算、分布式并行计算、时序处理、基因测序、化学分析、图像分析 等。

pic

在各种应用场景中都可以看到PostgreSQL的应用:

pic

PostgreSQL近年来的发展非常迅猛,从知名数据库评测网站dbranking的数据库评分趋势,可以看到PostgreSQL向上发展的趋势:

pic

从每年PostgreSQL中国召开的社区会议,也能看到同样的趋势,参与的公司越来越多,分享的公司越来越多,分享的主题越来越丰富,横跨了 传统企业、互联网、医疗、金融、国企、物流、电商、社交、车联网、共享XX、云、游戏、公共交通、航空、铁路、军工、培训、咨询服务等 行业。

接下来的一系列文章,将给大家介绍PostgreSQL的各种应用场景以及对应的性能指标。

环境

环境部署方法参考:

《PostgreSQL 10 + PostGIS + Sharding(pg_pathman) + MySQL(fdw外部表) on ECS 部署指南(适合新用户)》

阿里云 ECS:56核,224G,1.5TB*2 SSD云盘

操作系统:CentOS 7.4 x64

数据库版本:PostgreSQL 12

PS:ECS的CPU和IO性能相比物理机会打一定的折扣,可以按下降1倍性能来估算。跑物理主机可以按这里测试的性能乘以2来估算。

场景 - 大表JOIN统计查询 (OLAP)

1、背景

多张大表的JOIN,聚合分析。例如有一张用户表,一张业务日志表表示活跃用户的行为数据,按天分区。

用户表1亿条记录,每天1000万活跃用户,产生10亿行为数据。

根据用户行为join用户表,group 用户表的某些字段,生成用户画像。

2、设计

2张表,1张1亿,uid为主键。1张10亿,订单号为主键,uid关联第一张表。

3、准备测试表

create unlogged table t_user (uid int8, info text, c1 int, c2 int, c3 int, crt_time timestamp);  
  
create unlogged table t_user_log_20191212(id int8, uid int8, info text, crt_time timestamp);  

4、准备测试函数(可选)

5、准备测试数据

insert into t_user select generate_series(1,100000000), md5(random()::text), random()*10, random()*100, random()*1000, now();  
  
insert into t_user_log_20191212 select generate_series(1,1000000000), random()*10000000, md5(random()::text), now();  

空间占用分别为8.8GB, 87GB:

postgres=# \dt+ t_user  
                     List of relations  
 Schema |  Name  | Type  |  Owner   |  Size   | Description   
--------+--------+-------+----------+---------+-------------  
 public | t_user | table | postgres | 8880 MB |   
(1 row)  
  
postgres=# \dt+ t_user_log_20191212   
                           List of relations  
 Schema |        Name         | Type  |  Owner   | Size  | Description   
--------+---------------------+-------+----------+-------+-------------  
 public | t_user_log_20191212 | table | postgres | 87 GB |   
(1 row)  

6、准备测试脚本

7、测试

alter table t_user set (parallel_workers =64);  
alter table t_user_log_20191212 set (parallel_workers =64);  
  
set max_parallel_workers=128;  
set max_parallel_workers_per_gather =32;  
set min_parallel_table_scan_size =0;  
set min_parallel_index_scan_size =0;  
set parallel_setup_cost =0;  
set parallel_tuple_cost =0;  
set jit=on;
  
set parallel_leader_participation =off;  
set enable_sort =off;  
set work_mem='64MB';  
  
explain (analyze,verbose,timing,costs,buffers) select c1,count(*) from t_user join t_user_log_20191212 using (uid) group by c1;  
  
select t1.c1,count(*) from t_user t1 join t_user_log_20191212 t2 using (uid) group by c1;  

8、测试结果

postgres=#       explain  select c1,count(*) from t_user join t_user_log_20191212 using (uid) group by c1;
                                                    QUERY PLAN                                                    
------------------------------------------------------------------------------------------------------------------
 Finalize HashAggregate  (cost=13518803.57..13518803.68 rows=11 width=12)
   Group Key: t_user.c1
   ->  Gather  (cost=13518801.70..13518801.81 rows=352 width=12)
         Workers Planned: 32
         ->  Partial HashAggregate  (cost=13518801.70..13518801.81 rows=11 width=12)
               Group Key: t_user.c1
               ->  Parallel Hash Join  (cost=1221935.52..13362551.69 rows=31250002 width=4)
                     Hash Cond: (t_user_log_20191212.uid = t_user.uid)
                     ->  Parallel Seq Scan on t_user_log_20191212  (cost=0.00..11676137.02 rows=31250002 width=8)
                     ->  Parallel Hash  (cost=1167614.01..1167614.01 rows=3125001 width=12)
                           ->  Parallel Seq Scan on t_user  (cost=0.00..1167614.01 rows=3125001 width=12)
 JIT:
   Functions: 20
   Options: Inlining true, Optimization true, Expressions true, Deforming true
(14 rows)

postgres=# select c1,count(*) from t_user join t_user_log_20191212 using (uid) group by c1;
 c1 |   count   
----+-----------
  8 | 100163144
  7 |  99799644
 10 |  50012738
  9 | 100095291
  1 |  99945550
  5 |  99818748
  4 |  99862794
  2 | 100080723
  0 |  50167364
  6 |  99907094
  3 | 100146857
(11 rows)

Time: 46214.349 ms (00:46.214)

TPS: xx

响应时间: 46 秒

不开并行和jit的话,耗时735秒,相差16倍。

参考

《PostgreSQL、Greenplum 应用案例宝典《如来神掌》 - 目录》

《数据库选型之 - 大象十八摸 - 致 架构师、开发者》

《PostgreSQL 使用 pgbench 测试 sysbench 相关case》

《数据库界的华山论剑 tpc.org》

https://www.postgresql.org/docs/10/static/pgbench.html

 

免费领取阿里云RDS PostgreSQL实例、ECS虚拟机

相关实践学习
使用PolarDB和ECS搭建门户网站
本场景主要介绍基于PolarDB和ECS实现搭建门户网站。
阿里云数据库产品家族及特性
阿里云智能数据库产品团队一直致力于不断健全产品体系,提升产品性能,打磨产品功能,从而帮助客户实现更加极致的弹性能力、具备更强的扩展能力、并利用云设施进一步降低企业成本。以云原生+分布式为核心技术抓手,打造以自研的在线事务型(OLTP)数据库Polar DB和在线分析型(OLAP)数据库Analytic DB为代表的新一代企业级云原生数据库产品体系, 结合NoSQL数据库、数据库生态工具、云原生智能化数据库管控平台,为阿里巴巴经济体以及各个行业的企业客户和开发者提供从公共云到混合云再到私有云的完整解决方案,提供基于云基础设施进行数据从处理、到存储、再到计算与分析的一体化解决方案。本节课带你了解阿里云数据库产品家族及特性。
相关文章
|
24天前
|
存储 测试技术
统计测试结果的代码实现接昨天
统计测试结果的代码实现接昨天
|
2月前
|
Java
100143. 统计已测试设备 --力扣 --JAVA
给你一个长度为 n 、下标从 0 开始的整数数组 batteryPercentages ,表示 n 个设备的电池百分比。 你的任务是按照顺序测试每个设备 i,执行以下测试操作: 如果 batteryPercentages[i] 大于 0: 增加 已测试设备的计数。 将下标在 [i + 1, n - 1] 的所有设备的电池百分比减少 1,确保它们的电池百分比 不会低于 0 ,即 batteryPercentages[j] = max(0, batteryPercentages[j] - 1)。 移动到下一个设备。 否则,移动到下一个设备而不执行任何测试。 返回一个整数,表示按顺序执行测试操作
27 0
|
2月前
|
存储 算法 异构计算
基于FPGA的图像直方图统计实现,包括tb测试文件和MATLAB辅助验证
基于FPGA的图像直方图统计实现,包括tb测试文件和MATLAB辅助验证
|
3月前
|
缓存 关系型数据库 Serverless
数据库内核那些事,PolarDB HTAP Serverless,打造经济易用的实时分析系统
下本从IMCI Serverless核心优势角度的介绍各优化工作内容。
数据库内核那些事,PolarDB HTAP Serverless,打造经济易用的实时分析系统
|
4月前
|
关系型数据库 MySQL 分布式数据库
|
5月前
|
存储 人工智能 关系型数据库
StoneDB:开源MySQL HTAP数据库及其演进计划(二)
StoneDB:开源MySQL HTAP数据库及其演进计划(二)
72 0
|
5月前
|
存储 算法 关系型数据库
StoneDB:开源MySQL HTAP数据库及其演进计划(一)
StoneDB:开源MySQL HTAP数据库及其演进计划(一)
85 0
35-pytest-Hooks函数之统计测试结果
35-pytest-Hooks函数之统计测试结果
|
7月前
|
SQL 监控 测试技术
OceanBase 数据库中创建大表的索引
OceanBase 数据库中创建大表的索引
463 3
|
10月前
|
测试技术 BI
测试思想-测试总结 缺陷分析与统计浅析
测试思想-测试总结 缺陷分析与统计浅析
82 0

热门文章

最新文章