从认证到调度,K8s 集群上运行的小程序到底经历了什么?

本文涉及的产品
Serverless 应用引擎免费试用套餐包,4320000 CU,有效期3个月
容器镜像服务 ACR,镜像仓库100个 不限时长
可观测可视化 Grafana 版,10个用户账号 1个月
简介: 不知道大家有没有意识到一个现实:大部分时候,我们已经不像以前一样,通过命令行,或者可视窗口来使用一个系统了。

作者 | 声东  阿里云售后技术专家

导读:不知道大家有没有意识到一个现实:大部分时候,我们已经不像以前一样,通过命令行,或者可视窗口来使用一个系统了。

前言

现在我们上微博、或者网购,操作的其实不是眼前这台设备,而是一个又一个集群。通常,这样的集群拥有成百上千个节点,每个节点是一台物理机或虚拟机。集群一般远离用户,坐落在数据中心。为了让这些节点互相协作,对外提供一致且高效的服务,集群需要操作系统。Kubernetes 就是这样的操作系统。

1.jpeg

比较 Kubernetes 和单机操作系统,Kubernetes 相当于内核,它负责集群软硬件资源管理,并对外提供统一的入口,用户可以通过这个入口来使用集群,和集群沟通。

2.png

而运行在集群之上的程序,与普通程序有很大的不同。这样的程序,是“关在笼子里”的程序。它们从被制作,到被部署,再到被使用,都不寻常。我们只有深挖根源,才能理解其本质。

“关在笼子里”的程序

代码

我们使用 go 语言写了一个简单的 web 服务器程序 app.go,这个程序监听在 2580 这个端口。通过 http 协议访问这个服务的根路径,服务会返回 "This is a small app for kubernetes..." 字符串。

package main
import (
        "github.com/gorilla/mux"
        "log"
        "net/http"
)
func about(w http.ResponseWriter, r *http.Request) {
        w.Write([]byte("This is a small app for kubernetes...\n"))
}
func main() {
        r := mux.NewRouter()
        r.HandleFunc("/", about)
        log.Fatal(http.ListenAndServe("0.0.0.0:2580", r))
}

使用 go build 命令编译这个程序,产生 app 可执行文件。这是一个普通的可执行文件,它在操作系统里运行,会依赖系统里的库文件。

# ldd app
linux-vdso.so.1 => (0x00007ffd1f7a3000)
libpthread.so.0 => /lib64/libpthread.so.0 (0x00007f554fd4a000)
libc.so.6 => /lib64/libc.so.6 (0x00007f554f97d000)
/lib64/ld-linux-x86-64.so.2 (0x00007f554ff66000)

“笼子”

为了让这个程序不依赖于操作系统自身的库文件,我们需要制作容器镜像,即隔离的运行环境。Dockerfile 是制作容器镜像的“菜谱”。我们的菜谱就只有两个步骤,下载一个 centos 的基础镜像,把 app 这个可执行文件放到镜像中 /usr/local/bin 目录中去。

FROM centos
ADD app /usr/local/bin

地址

制作好的镜像存再本地,我们需要把这个镜像上传到镜像仓库里去。这里的镜像仓库,相当于应用商店。我们使用阿里云的镜像仓库,上传之后镜像地址是:

registry.cn-hangzhou.aliyuncs.com/kube-easy/app:latest

镜像地址可以拆分成四个部分:仓库地址/命名空间/镜像名称:镜像版本。显然,镜像上边的镜像,在阿里云杭州镜像仓库,使用的命名空间是 kube-easy,镜像名:版本是 app:latest。至此,我们有了一个可以在 Kubernetes 集群上运行的、“关在笼子里”的小程序。

得其门而入

入口

Kubernetes 作为操作系统,和普通的操作系统一样,有 API 的概念。有了 API,集群就有了入口;有了 API,我们使用集群,才能得其门而入。Kubernetes 的 API 被实现为运行在集群节点上的组件 API Server。这个组件是典型的 web 服务器程序,通过对外暴露 http(s) 接口来提供服务。

3.png

这里我们创建一个阿里云 Kubernetes 集群。登录集群管理页面,我们可以看到 API Server 的公网入口。

API Server 内网连接端点: https://xx.xxx.xxx.xxx:6443

双向数字证书验证

阿里云 Kubernetes 集群 API Server 组件,使用基于 CA 签名的双向数字证书认证来保证客户端与 api server 之间的安全通信。这句话很绕口,对于初学者不太好理解,我们来深入解释一下。

从概念上来讲,数字证书是用来验证网络通信参与者的一个文件。这和学校颁发给学生的毕业证书类似。在学校和学生之间,学校是可信第三方 CA,而学生是通信参与者。如果社会普遍信任一个学校的声誉的话,那么这个学校颁发的毕业证书,也会得到社会认可。参与者证书和 CA 证书可以类比毕业证和学校的办学许可证。

这里我们有两类参与者,CA 和普通参与者;与此对应,我们有两种证书,CA 证书和参与者证书;另外我们还有两种关系,证书签发关系以及信任关系。这两种关系至关重要。

我们先看签发关系。如下图,我们有两张 CA 证书,三个参与者证书。

其中最上边的 CA 证书,签发了两张证书,一张是中间的 CA 证书,另一张是右边的参与者证书;中间的 CA 证书,签发了下边两张参与者证书。这六张证书以签发关系为联系,形成了树状的证书签发关系图。

4.png

然而,证书以及签发关系本身,并不能保证可信的通信可以在参与者之间进行。以上图为例,假设最右边的参与者是一个网站,最左边的参与者是一个浏览器,浏览器相信网站的数据,不是因为网站有证书,也不是因为网站的证书是 CA 签发的,而是因为浏览器相信最上边的 CA,也就是信任关系。

理解了 CA(证书),参与者(证书),签发关系,以及信任关系之后,我们回过头来看“基于 CA 签名的双向数字证书认证”。客户端和 API Server 作为通信的普通参与者,各有一张证书。而这两张证书,都是由 CA 签发,我们简单称它们为集群 CA 和客户端 CA。客户端信任集群 CA,所以它信任拥有集群 CA 签发证书的 API Server;反过来 API Server 需要信任客户端 CA,它才愿意与客户端通信。

阿里云 Kubernetes 集群,集群 CA 证书,和客户端 CA 证书,实现上其实是一张证书,所以我们有这样的关系图。

5.png

KubeConfig 文件

登录集群管理控制台,我们可以拿到 KubeConfig 文件。这个文件包括了客户端证书,集群 CA 证书,以及其他。证书使用 base64 编码,所以我们可以使用 base64 工具解码证书,并使用 openssl 查看证书文本。

  • 首先,客户端证书的签发者 CN 是集群 id c0256a3b8e4b948bb9c21e66b0e1d9a72,而证书本身的 CN 是子账号 252771643302762862;
Certificate:
    Data:
        Version: 3 (0x2)
        Serial Number: 787224 (0xc0318)
    Signature Algorithm: sha256WithRSAEncryption
        Issuer: O=c0256a3b8e4b948bb9c21e66b0e1d9a72, OU=default, CN=c0256a3b8e4b948bb9c21e66b0e1d9a72
        Validity
            Not Before: Nov 29 06:03:00 2018 GMT
            Not After : Nov 28 06:08:39 2021 GMT
        Subject: O=system:users, OU=, CN=252771643302762862
  • 其次,只有在 API Server 信任客户端 CA 证书的情况下,上边的客户端证书才能通过 API Server 的验证。kube-apiserver 进程通过 client-ca-file 这个参数指定其信任的客户端 CA 证书,其指定的证书是 /etc/kubernetes/pki/apiserver-ca.crt。这个文件实际上包含了两张客户端 CA 证书,其中一张和集群管控有关系,这里不做解释,另外一张如下,它的 CN 与客户端证书的签发者 CN 一致;
Certificate:
    Data:
        Version: 3 (0x2)
        Serial Number: 787224 (0xc0318)
    Signature Algorithm: sha256WithRSAEncryption
        Issuer: O=c0256a3b8e4b948bb9c21e66b0e1d9a72, OU=default, CN=c0256a3b8e4b948bb9c21e66b0e1d9a72
        Validity
            Not Before: Nov 29 06:03:00 2018 GMT
            Not After : Nov 28 06:08:39 2021 GMT
        Subject: O=system:users, OU=, CN=252771643302762862
  • 再次,API Server 使用的证书,由 kube-apiserver 的参数 tls-cert-file 决定,这个参数指向证书 /etc/kubernetes/pki/apiserver.crt。这个证书的 CN 是 kube-apiserver,签发者是 c0256a3b8e4b948bb9c21e66b0e1d9a72,即集群 CA 证书;
Certificate:
    Data:
        Version: 3 (0x2)
        Serial Number: 2184578451551960857 (0x1e512e86fcba3f19)
    Signature Algorithm: sha256WithRSAEncryption
        Issuer: O=c0256a3b8e4b948bb9c21e66b0e1d9a72, OU=default, CN=c0256a3b8e4b948bb9c21e66b0e1d9a72
        Validity
            Not Before: Nov 29 03:59:00 2018 GMT
            Not After : Nov 29 04:14:23 2019 GMT
        Subject: CN=kube-apiserver
  • 最后,客户端需要验证上边这张 API Server 的证书,因而 KubeConfig 文件里包含了其签发者,即集群 CA 证书。对比集群 CA 证书和客户端 CA 证书,发现两张证书完全一样,这符合我们的预期。
Certificate:
    Data:
        Version: 3 (0x2)
        Serial Number: 786974 (0xc021e)
    Signature Algorithm: sha256WithRSAEncryption
        Issuer: C=CN, ST=ZheJiang, L=HangZhou, O=Alibaba, OU=ACS, CN=root
        Validity
            Not Before: Nov 29 03:59:00 2018 GMT
            Not After : Nov 24 04:04:00 2038 GMT
        Subject: O=c0256a3b8e4b948bb9c21e66b0e1d9a72, OU=default, CN=c0256a3b8e4b948bb9c21e66b0e1d9a72

访问

理解了原理之后,我们可以做一个简单的测试:以证书作为参数,使用 curl 访问 api server,并得到预期结果。

# curl --cert ./client.crt --cacert ./ca.crt --key ./client.key https://xx.xx.xx.xxx:6443/api/
{
  "kind": "APIVersions",
  "versions": [
    "v1"
  ],
  "serverAddressByClientCIDRs": [
    {
      "clientCIDR": "0.0.0.0/0",
      "serverAddress": "192.168.0.222:6443"
    }
  ]
}

择优而居

两种节点,一种任务

如开始所讲,Kubernetes 是管理集群多个节点的操作系统。这些节点在集群中的角色,却不必完全一样。Kubernetes 集群有两种节点:master 节点和 worker 节点。

这种角色的区分,实际上就是一种分工:master 负责整个集群的管理,其上运行的以集群管理组件为主,这些组件包括实现集群入口的 api server;而 worker 节点主要负责承载普通任务。

在 Kubernetes 集群中,任务被定义为 pod 这个概念。pod 是集群可承载任务的原子单元,pod 被翻译成容器组,其实是意译,因为一个 pod 实际上封装了多个容器化的应用。原则上来讲,被封装在一个 pod 里边的容器,应该是存在相当程度的耦合关系。

6.png

择优而居

调度算法需要解决的问题,是替 pod 选择一个舒适的“居所”,让 pod 所定义的任务可以在这个节点上顺利地完成。

为了实现“择优而居”的目标,Kubernetes 集群调度算法采用了两步走的策略:

  • 第一步,从所有节点中排除不满足条件的节点,即预选;
  • 第二步,给剩余的节点打分,最后得分高者胜出,即优选。

下面我们使用文章开始的时候制作的镜像,创建一个 pod,并通过日志来具体分析一下,这个 pod 怎么样被调度到某一个集群节点。

Pod 配置

首先,我们创建 pod 的配置文件,配置文件格式是 json。这个配置文件有三个地方比较关键,分别是镜像地址,命令以及容器的端口。

{
    "apiVersion": "v1",
    "kind": "Pod",
    "metadata": {
        "name": "app"
    },
    "spec": {
        "containers": [
            {
                "name": "app",
                "image": "registry.cn-hangzhou.aliyuncs.com/kube-easy/app:latest",
                "command": [
                    "app"
                ],
                "ports": [
                    {
                        "containerPort": 2580
                    }
                ]
            }
        ]
    }
}

日志级别

集群调度算法被实现为运行在 master 节点上的系统组件,这一点和 api server 类似。其对应的进程名是 kube-scheduler。kube-scheduler 支持多个级别的日志输出,但社区并没有提供详细的日志级别说明文档。查看调度算法对节点进行筛选、打分的过程,我们需要把日志级别提高到 10,即加入参数 --v=10。

kube-scheduler --address=127.0.0.1 --kubeconfig=/etc/kubernetes/scheduler.conf --leader-elect=true --v=10

创建 Pod

使用 curl,以证书和 pod 配置文件等作为参数,通过 POST 请求访问 api server 的接口,我们可以在集群里创建对应的 pod。

# curl -X POST -H 'Content-Type: application/json;charset=utf-8' --cert ./client.crt --cacert ./ca.crt --key ./client.key https://47.110.197.238:6443/api/v1/namespaces/default/pods -d@app.json

预选

预选是 Kubernetes 调度的第一步,这一步要做的事情,是根据预先定义的规则,把不符合条件的节点过滤掉。不同版本的 Kubernetes 所实现的预选规则有很大的不同,但基本的趋势,是预选规则会越来越丰富。

比较常见的两个预选规则是 PodFitsResourcesPred 和 PodFitsHostPortsPred。前一个规则用来判断,一个节点上的剩余资源,是不是能够满足 pod 的需求;而后一个规则,检查一个节点上某一个端口是不是已经被其他 pod 所使用了。

下图是调度算法在处理测试 pod 的时候,输出的预选规则的日志。这段日志记录了预选规则 CheckVolumeBindingPred 的执行情况。某些类型的存储卷(PV),只能挂载到一个节点上,这个规则可以过滤掉不满足 pod 对 PV 需求的节点。

从 app 的编排文件里可以看到,pod 对存储卷并没有什么需求,所以这个条件并没有过滤掉节点。

7.png

优选

调度算法的第二个阶段是优选阶段。这个阶段,kube-scheduler 会根据节点可用资源及其他一些规则,给剩余节点打分。

目前,CPU 和内存是调度算法考量的两种主要资源,但考量的方式并不是简单的,剩余 CPU、内存资源越多,得分就越高。

日志记录了两种计算方式:LeastResourceAllocation 和 BalancedResourceAllocation。

  • 前一种方式计算 pod 调度到节点之后,节点剩余 CPU 和内存占总 CPU 和内存的比例,比例越高得分就越高;
  • 第二种方式计算节点上 CPU 和内存使用比例之差的绝对值,绝对值越大,得分越少。

这两种方式,一种倾向于选出资源使用率较低的节点,第二种希望选出两种资源使用比例接近的节点。这两种方式有一些矛盾,最终依靠一定的权重来平衡这两个因素。

8.png

除了资源之外,优选算法会考虑其他一些因素,比如 pod 与节点的亲和性,或者如果一个服务有多个相同 pod 组成的情况下,多个 pod 在不同节点上的分散程度,这是保证高可用的一种策略。

9.png

得分

最后,调度算法会给所有的得分项乘以它们的权重,然后求和得到每个节点最终的得分。因为测试集群使用的是默认调度算法,而默认调度算法把日志中出现的得分项所对应的权重,都设置成了 1,所以如果按日志里有记录得分项来计算,最终三个节点的得分应该是 29,28 和 29。

10.png

之所以会出现日志输出的得分和我们自己计算的得分不符的情况,是因为日志并没有输出所有的得分项,猜测漏掉的策略应该是 NodePreferAvoidPodsPriority,这个策略的权重是 10000,每个节点得分 10,所以才得出最终日志输出的结果。

结束语

在本文中,我们以一个简单的容器化 web 程序为例,着重分析了客户端怎么样通过 Kubernetes 集群 API Server 认证,以及容器应用怎么样被分派到合适节点这两件事情。

在分析过程中,我们弃用了一些便利的工具,比如 kubectl,或者控制台。我们用了一些更接近底层的小实验,比如拆解 KubeConfig 文件,再比如分析调度器日志来分析认证和调度算法的运作原理。希望这些对大家进一步理解 Kubernetes 集群有所帮助。

架构师成长系列直播

11.png

阿里巴巴云原生关注微服务、Serverless、容器、Service Mesh 等技术领域、聚焦云原生流行技术趋势、云原生大规模的落地实践,做最懂云原生开发者的技术圈。”

相关实践学习
通过Ingress进行灰度发布
本场景您将运行一个简单的应用,部署一个新的应用用于新的发布,并通过Ingress能力实现灰度发布。
容器应用与集群管理
欢迎来到《容器应用与集群管理》课程,本课程是“云原生容器Clouder认证“系列中的第二阶段。课程将向您介绍与容器集群相关的概念和技术,这些概念和技术可以帮助您了解阿里云容器服务ACK/ACK Serverless的使用。同时,本课程也会向您介绍可以采取的工具、方法和可操作步骤,以帮助您了解如何基于容器服务ACK Serverless构建和管理企业级应用。 学习完本课程后,您将能够: 掌握容器集群、容器编排的基本概念 掌握Kubernetes的基础概念及核心思想 掌握阿里云容器服务ACK/ACK Serverless概念及使用方法 基于容器服务ACK Serverless搭建和管理企业级网站应用
相关文章
|
9天前
|
Prometheus Kubernetes 监控
OpenAI故障复盘 - 阿里云容器服务与可观测产品如何保障大规模K8s集群稳定性
聚焦近日OpenAI的大规模K8s集群故障,介绍阿里云容器服务与可观测团队在大规模K8s场景下我们的建设与沉淀。以及分享对类似故障问题的应对方案:包括在K8s和Prometheus的高可用架构设计方面、事前事后的稳定性保障体系方面。
|
7天前
|
Kubernetes Ubuntu 网络安全
ubuntu使用kubeadm搭建k8s集群
通过以上步骤,您可以在 Ubuntu 系统上使用 kubeadm 成功搭建一个 Kubernetes 集群。本文详细介绍了从环境准备、安装 Kubernetes 组件、初始化集群到管理和使用集群的完整过程,希望对您有所帮助。在实际应用中,您可以根据具体需求调整配置,进一步优化集群性能和安全性。
44 12
|
12天前
|
Kubernetes 网络协议 应用服务中间件
Kubernetes Ingress:灵活的集群外部网络访问的利器
《Kubernetes Ingress:集群外部访问的利器-打造灵活的集群网络》介绍了如何通过Ingress实现Kubernetes集群的外部访问。前提条件是已拥有Kubernetes集群并安装了kubectl工具。文章详细讲解了Ingress的基本组成(Ingress Controller和资源对象),选择合适的版本,以及具体的安装步骤,如下载配置文件、部署Nginx Ingress Controller等。此外,还提供了常见问题的解决方案,例如镜像下载失败的应对措施。最后,通过部署示例应用展示了Ingress的实际使用方法。
28 2
|
24天前
|
存储 Kubernetes 关系型数据库
阿里云ACK备份中心,K8s集群业务应用数据的一站式灾备方案
本文源自2024云栖大会苏雅诗的演讲,探讨了K8s集群业务为何需要灾备及其重要性。文中强调了集群与业务高可用配置对稳定性的重要性,并指出人为误操作等风险,建议实施周期性和特定情况下的灾备措施。针对容器化业务,提出了灾备的新特性与需求,包括工作负载为核心、云资源信息的备份,以及有状态应用的数据保护。介绍了ACK推出的备份中心解决方案,支持命名空间、标签、资源类型等维度的备份,并具备存储卷数据保护功能,能够满足GitOps流程企业的特定需求。此外,还详细描述了备份中心的使用流程、控制台展示、灾备难点及解决方案等内容,展示了备份中心如何有效应对K8s集群资源和存储卷数据的灾备挑战。
|
2月前
|
Kubernetes 监控 Cloud Native
Kubernetes集群的高可用性与伸缩性实践
Kubernetes集群的高可用性与伸缩性实践
78 1
|
3月前
|
JSON Kubernetes 容灾
ACK One应用分发上线:高效管理多集群应用
ACK One应用分发上线,主要介绍了新能力的使用场景
|
3月前
|
Kubernetes 持续交付 开发工具
ACK One GitOps:ApplicationSet UI简化多集群GitOps应用管理
ACK One GitOps新发布了多集群应用控制台,支持管理Argo CD ApplicationSet,提升大规模应用和集群的多集群GitOps应用分发管理体验。
|
3月前
|
移动开发 小程序 数据可视化
基于npm CLI脚手架的uniapp项目创建、运行与打包全攻略(微信小程序、H5、APP全覆盖)
基于npm CLI脚手架的uniapp项目创建、运行与打包全攻略(微信小程序、H5、APP全覆盖)
408 3
|
3月前
|
Kubernetes Ubuntu Linux
Centos7 搭建 kubernetes集群
本文介绍了如何搭建一个三节点的Kubernetes集群,包括一个主节点和两个工作节点。各节点运行CentOS 7系统,最低配置为2核CPU、2GB内存和15GB硬盘。详细步骤包括环境配置、安装Docker、关闭防火墙和SELinux、禁用交换分区、安装kubeadm、kubelet、kubectl,以及初始化Kubernetes集群和安装网络插件Calico或Flannel。
235 4
|
3月前
|
Kubernetes 应用服务中间件 nginx
搭建Kubernetes v1.31.1服务器集群,采用Calico网络技术
在阿里云服务器上部署k8s集群,一、3台k8s服务器,1个Master节点,2个工作节点,采用Calico网络技术。二、部署nginx服务到k8s集群,并验证nginx服务运行状态。
1066 1

相关产品

  • 容器服务Kubernetes版