决策树之 GBDT 算法 - 分类部分

简介: 上一次我们一起学习了 [GBDT 算法的回归部分](https://www.atatech.org/articles/158821),今天我们继续学习该算法的分类部分。使用 GBDT 来解决分类问题和解决回归问题的本质是一样的,都是通过不断构建决策树的方式,使预测结果一步步的接近目标值。 因为是分类问题,所以分类 GBDT 和回归 GBDT 的 Loss 函数是不同的,具体原因我们在《[深入

上一次我们一起学习了 GBDT 算法的回归部分,今天我们继续学习该算法的分类部分。使用 GBDT 来解决分类问题和解决回归问题的本质是一样的,都是通过不断构建决策树的方式,使预测结果一步步的接近目标值。

因为是分类问题,所以分类 GBDT 和回归 GBDT 的 Loss 函数是不同的,具体原因我们在《深入理解逻辑回归》 一文中有分析过,下面我们来看下分类 GBDT 的 Loss 函数。

Loss 函数

和逻辑回归一样,分类 GBDT 的 Loss 函数采用的也是 Log Likelihood:

$$ L = \arg\min\left[\sum_i^n-( y_i\log(p_i)+(1-y_i)\log(1-p_i) )\right] $$

其中,n 表示有 n 条样本,$y_i$ 为第 i 条样本的观察值(或目标值),该值要么是 0,要么是 1; $p_i$ 为模型对第 i 个样本的预测值,它是一个取值范围为 [0,1] 之间的概率,现在我们来看下该 Loss 是否可导,只用看"求和符号 $\sum$" 里面的部分是否可导即可,如下:

$$ \begin{aligned} l&=-y_i\log(p_i) - (1-y_i)\log(1-p_i)\\ &=-y_i\log(p_i)-\log(1-p_i)-y_i\log(1-p_i)\\ &=-y_i(\log(\frac{p_i}{1-p_i}))-\log(1-p_i) \end{aligned} $$

把上面式子中的 p 用 log(odds) 来表示,即用 $\log(odds_i)$ 来替换 $\log(p_i/(1-p_i))$,用 $e^{\log(odds_i)}/(1+e^{\log(odds_i)})$ 来替换 $p_i$(对 log(odds) 不熟悉的同学,可以先阅读深入理解逻辑回归一文),如下:

$$ \begin{aligned} l&= -y_i\log(odds_i) - \log(1-\frac{e^{\log(odds_i)}}{1+e^{\log(odds_i)}}) \\&=- y_i\log(odds_i) - \log(\frac{1}{1+e^{\log(odds_i)}}) \\&=-y_i\log(odds_i)+\log(1+e^{\log(odds_i)}) \end{aligned} $$

我们再对其求导:

$$ \frac{dl}{d\log(odds)} = -y_i + \frac{e^{\log(odds_i)}}{1+e^{\log(odds_i)}} $$

右边的 $e^{log(odds_i)}/(1+e^{log(odds_i)})$ 正好又是 $p_i$,所以 $l'(\log(odds))$ 又等于 $-y_i+p_i$,注意,这两种形式后面都会用到。可见,这个 loss 函数是可导的,该分类算法可以用梯度下降来求解。

构建分类 GBDT 的步骤依然是下面两个:

  1. 初始化 GBDT
  2. 循环生成决策树

下面我们来一一说明:

初始化 GBDT

和回归问题一样,分类 GBDT 的初始状态也只有一个叶子节点,该节点为所有样本的初始预测值,如下:

$$ F_0(x) = \arg\min_{\gamma}\sum_{i=1}^n L(y,\gamma) $$

上式中,F 代表 GBDT 模型,$F_0$ 为模型的初始状态,该式子意为:找到一个 $\gamma$,使所有样本的 Loss 最小,在这里及下文中,$\gamma$ 都表示节点的输出,且它是一个 log(odds) 形式的值,在初始状态,$\gamma$ 又是 $F_0$。

我们还是用一个最简单的例子来说明该步骤,假设我们有以下 3 条样本:

喜欢爆米花 年龄 颜色偏好 喜欢看电影
Yes 12 Blue Yes
No 87 Green Yes
No 44 Blue No

我们希望构建 GBDT 分类树,它能通过「喜欢爆米花」、「年龄」和「颜色偏好」这 3 个特征来预测某一个样本是否喜欢看电影,因为是只有 3 个样本的极简数据集,所以我们的决策树都是只有 1 个根节点、2 个叶子节点的树桩(Stump),但在实际应用中,决策树的叶子节点一般为 8-32 个。

我们把数据代入上面的公式中求 Loss:

$$ Loss = L(1,\gamma)+L(1,\gamma)+L(0,\gamma) $$

为了使其最小,我们对它求导,并令结果等于 0:

$$ (-1+p)+(-1+p)+(0+p)=0 $$

于是初始值 $p=2/3=0.67$,$\gamma=\log(2)=0.69$,模型的初始状态 $F_0(x)$ 为 0.69。

说了一大堆,实际上你却可以很容易的算出该模型的初始值,它就是正样本数比上负样本数的 log 值,例子中,正样本数为 2 个,负样本为 1 个,那么:

$$ F_0(x)=\log(\frac{positive\_count}{negative\_count}) = \log(\frac{2}{1}) = 0.69 $$

循环生成决策树

和回归 GBDT 一样,分类 GBDT 第二步也可以分成四个子步骤:(A)、(B)、(C)、(D),我们把它写成伪代码:

for m = 1 to M:
    (A)
    (B)
    (C)
    (D)

其中 m 表示第 m 棵树,M 为树的个数上限,我们先来看 (A):

(A):计算

$$ r_{im} = -\left[\frac{\partial L(y_i, F(x_i))}{\partial F(x_i)}\right]_{F(x)=F_{m-1}(x)} $$

此处为使用 m-1 棵树的模型,计算每个样本的残差 $r_{im}$,这里的偏微分实际上就是求每个样本的梯度,因为梯度我们已经计算过了,即 $-y_i+p_i$,那么 $r_{im}=y_i-p_i$,于是我们的例子中,每个样本的残差如下:

样本 i 喜欢看电影 第1棵树的残差 $r_{i1}$
1 Yes 1-0.67=0.33
2 Yes 1-0.67=0.33
3 No 0-0.67=-0.67

这样,第 (A) 小步就完成了。

(B):使用回归树来拟合 $r_{im}$,回归树的构建过程可以参照《CART 回归决策树》一文。我们产生的第 2 棵决策树(此时 m=1)如下:

(C):对每个叶子节点 j,计算

$$ \gamma_{jm} = \arg\min_{\gamma}\sum_{x\in R_{ij}} L(y_i, F_{m-1}(x_i) + \gamma) $$

意思是,在刚构建的树 m 中,找到每个节点 j 的输出 $\gamma_{jm}$,能使该节点的 Loss 最小。

左边节点对应第 1 个样本,我们把它带入到上式得:

$$ L(y_1,F_{m-1}(x_1)+\gamma)=-y_1(F_{m-1}(x_1)+\gamma) + \log(1+e^{F_{m-1}(x_1)+\gamma}) $$

对上式直接求导较为复杂,这里的技巧是先使用二阶泰勒公式来近似表示该式,再求导:把 $\gamma$ 作为变量,其余项作为常量的二阶泰勒展开式如下:

$$ L(y_1,F_{m-1}(x_1)+\gamma)\approx L(y_1,F_{m-1}(x_1)) + L'(y_1,F_{m-1}(x_1))\gamma + \frac{1}{2}L''(y_1,F_{m-1}(x_1))\gamma^2 $$

这时再求导就简单了:

$$ \frac{dL}{d\gamma} = L'(y_1,F_{m-1}(x_1)) + L''(y_1,F_{m-1}(x_1))\gamma $$

Loss 最小时,上式等于 0,于是我们可以求出 $\gamma$

$$ \gamma_{11} = \frac{-L'(y_1,F_{m-1}(x_1))}{L''(y_1,F_{m-1}(x_1))} $$

可以看出,上式的分子就是残差 r,下面我们算一下分母,即 Loss 函数的二阶微分:

$$ \begin{aligned} L''(y_1,F(x)) &= \frac{dL'}{d\log(odds)}\\ &=\frac{d}{d\log(odds)}\left[-y_i + \frac{e^{\log(odds)}}{1+e^{\log(odds)}}\right]\\ &=\frac{d}{d\log(odds)}\left[e^{\log(odds)}(1+e^{\log(odds)})^{-1}\right]\\ &=e^{\log(odds)}(1+e^{\log(odds)})^{-1} - e^{2\log(odds)}(1+e^{\log(odds)})^{-2}\\ &=\frac{e^{\log(odds)}}{(1+e^{\log(odds)})^2} \end{aligned} $$

我们知道,$e^{\log(odds)}/(1+e^{\log(odds)})$ 就是 p,而 $1/(1+e^{\log(odds)})$ 是 1-p,所以 $L''=p(1-p)$,那么该节点的输出就是

$$ \gamma_{11} = \frac{r_{11}}{p_{10}(1-p_{10})}=\frac{0.33}{0.67\times0.33} = 1.49 $$

接着我们来计算右边节点的输出,它包含样本 2 和样本 3,同样使用二阶泰勒公式展开:

$$ \begin{aligned} &L(y_2,F_{m-1}(x_2)+\gamma) + L(y_3,F_{m-1}(x_3)+\gamma)\\ &\approx L(y_2,F_{m-1}(x_2)) +L'(y_2,F_{m-1}(x_2))\gamma + \frac{1}{2}L''(y_2,F_{m-1}(x_2))\gamma^2\\ &+L(y_3,F_{m-1}(x_3)) +L'(y_3,F_{m-1}(x_3))\gamma + \frac{1}{2}L''(y_3,F_{m-1}(x_3))\gamma^2 \end{aligned} $$

对上式求导,令其结果为 0,可以计算 $\gamma$ 为

$$ \begin{aligned} \gamma_{21} &= \frac{-L'(y_2,F_{m-1}(x_2))-L'(y_3,F_{m-1}(x_3))}{L''(y_2,F_{m-1}(x_2))+L''(y_3,F_{m-1}(x_3))}\\ &=\frac{r_{21}+r_{31}}{p_{20}(1-p_{20}) + p_{30}(1-p_{30})}\\ &=\frac{0.33-0.67}{0.67\times 0.33 + 0.67\times 0.33}\\ &= -0.77 \end{aligned} $$

这样,(C) 步骤即完成了。可以看出,对任意叶子节点,我们可以直接计算其输出值:

$$ \gamma_{jm} = \frac{\sum_{i=1}^{R_{ij}} r_{im}}{\sum_{i=1}^{R_{ij}} p_{i,m-1}(1-p_{i,m-1})} $$

(D):更新模型 $F_m(x)$

$$ F_m(x) = F_{m-1}(x) + \nu \sum_{j=1}^{J_m} \gamma_m $$

仔细观察该式,实际上它就是梯度下降——「加上残差」和「减去梯度」这两个操作是等价的,这里设学习率 $\nu$ 为 0.1,则 3 个样本更新如下:

样本 喜欢看电影 $F_0(x)$ $F_1(x)$
1 Yes 0.69 0.69+0.1×(1.49)=0.84
2 Yes 0.69 0.69+0.1×(-0.77)=0.61
3 No 0.69 0.61+0.1×(-0.77)=0.61

可见,样本 1 和样本 3 都离正确的方向更进了一步,虽然样本 2 更远了,但我们可以造更多的树来弥补该差距。

最终,循环 M 次后,或总残差低于预设的阈值时,我们的分类 GBDT 建模便完成了。

总结

本文主要介绍了分类 GBDT 的原理,具体有以下 2 个方面:

  1. 分类 GBDT 的 Loss 函数
  2. 构建分类 GBDT 的详细步骤

本文的公式比较多,但稍加耐心,你会发现它其实并不复杂。

参考:

相关文章
|
2月前
|
存储 算法 C语言
"揭秘C语言中的王者之树——红黑树:一场数据结构与算法的华丽舞蹈,让你的程序效率飙升,直击性能巅峰!"
【8月更文挑战第20天】红黑树是自平衡二叉查找树,通过旋转和重着色保持平衡,确保高效执行插入、删除和查找操作,时间复杂度为O(log n)。本文介绍红黑树的基本属性、存储结构及其C语言实现。红黑树遵循五项基本规则以保持平衡状态。在C语言中,节点包含数据、颜色、父节点和子节点指针。文章提供了一个示例代码框架,用于创建节点、插入节点并执行必要的修复操作以维护红黑树的特性。
71 1
|
17天前
|
机器学习/深度学习 人工智能 算法
【新闻文本分类识别系统】Python+卷积神经网络算法+人工智能+深度学习+计算机毕设项目+Django网页界面平台
文本分类识别系统。本系统使用Python作为主要开发语言,首先收集了10种中文文本数据集("体育类", "财经类", "房产类", "家居类", "教育类", "科技类", "时尚类", "时政类", "游戏类", "娱乐类"),然后基于TensorFlow搭建CNN卷积神经网络算法模型。通过对数据集进行多轮迭代训练,最后得到一个识别精度较高的模型,并保存为本地的h5格式。然后使用Django开发Web网页端操作界面,实现用户上传一段文本识别其所属的类别。
31 1
【新闻文本分类识别系统】Python+卷积神经网络算法+人工智能+深度学习+计算机毕设项目+Django网页界面平台
|
14天前
|
大数据 UED 开发者
实战演练:利用Python的Trie树优化搜索算法,性能飙升不是梦!
在数据密集型应用中,高效搜索算法至关重要。Trie树(前缀树/字典树)通过优化字符串处理和搜索效率成为理想选择。本文通过Python实战演示Trie树构建与应用,显著提升搜索性能。Trie树利用公共前缀减少查询时间,支持快速插入、删除和搜索。以下为简单示例代码,展示如何构建及使用Trie树进行搜索与前缀匹配,适用于自动补全、拼写检查等场景,助力提升应用性能与用户体验。
35 2
|
29天前
|
机器学习/深度学习 算法 数据挖掘
决策树算法大揭秘:Python让你秒懂分支逻辑,精准分类不再难
【9月更文挑战第12天】决策树算法作为机器学习领域的一颗明珠,凭借其直观易懂和强大的解释能力,在分类与回归任务中表现出色。相比传统统计方法,决策树通过简单的分支逻辑实现了数据的精准分类。本文将借助Python和scikit-learn库,以鸢尾花数据集为例,展示如何使用决策树进行分类,并探讨其优势与局限。通过构建一系列条件判断,决策树不仅模拟了人类决策过程,还确保了结果的可追溯性和可解释性。无论您是新手还是专家,都能轻松上手,享受机器学习的乐趣。
37 9
|
2天前
|
机器学习/深度学习 人工智能 算法
【机器学习】决策树算法
【机器学习】决策树算法
|
2月前
|
机器学习/深度学习 运维 算法
|
2月前
|
机器学习/深度学习 算法 数据挖掘
【白话机器学习】算法理论+实战之决策树
【白话机器学习】算法理论+实战之决策树
|
2月前
|
机器学习/深度学习 运维 算法
|
2月前
|
机器学习/深度学习 算法 数据可视化
决策树算法介绍:原理与案例实现
决策树算法介绍:原理与案例实现
|
2月前
|
存储 算法 安全
密码算法的分类
【8月更文挑战第23天】
48 0