PAI平台输出数据下载到本地的操作方法

本文涉及的产品
模型训练 PAI-DLC,100CU*H 3个月
模型在线服务 PAI-EAS,A10/V100等 500元 1个月
交互式建模 PAI-DSW,每月250计算时 3个月
简介: 因为DATA WORKS只有本地文件上传入口而没有下载入口,所以当遇到特别是小规模输出结果数据需要下载到本地时需要通过其他方法,PAI平台所展示的数据输出只有100条,本文提供了一种将PAI平台输出到MAXCOMPUTE 中的数据下载到本地的方法,通过DATA WORKS中的手动业务流程实现

PAI的输出

image.png


如上图所示为PAI平台的数据输出模块,需要明确的是数据的输入和输出都不是在PAI平台完成的,输入的数据和输出的数据都在MAXCOMPUTE中,PAI平台只是完成计算任务
image.png
右键单击以上模块,查看输出数据则能看到输出数据的前100条,复制按钮可以将这100条数据复制并粘贴到本地,但是当输出数据大于100条时,则没有办法在PAI平台内实现

通过DATA WORKS的导出数据至本地的方法

通过DATA WORKS来进行MAXCOMPUTE中资源的管理,查看数据开发界面,可以发现并没有下载到本地的选项而是只有将本地数据上传至MAXCOMPUTE中选项

image.png


因此采用手动业务流程的方法,通过添加SQL组件来实现将输出数据下载到本地的操作
image.png
标签中选择手动业务流程,可以看到流程节点,向可视化界面中添加一个ODPS SQL节点
image.png
打开节点,并编写一条查询输出数据表中所有数据的SQL语句,点击运行,并可以看到输出表格并且在输出表格的下方有下载至本地的按钮,需要特别注意的是,SQL查询需要计算费用,具体费用会在计算前有提示

总结:

1、当输出数据在100条以上时,在PAI平台内无法将输出数据全部下载到本地
2、PAI本身不存储数据,只进行计算
3、DATA WORKS只有本地数据上传导入的入口,而没有单独的将数据下载到本地的入口
4、可以通过手动业务流程来将数据下载到本地
5、添加单个业务流程节点(ODPS SQL)并打开节点写一条查询所有输出数据表的SQL语句
6、运行SQL查询语句费用会在运行前有提示,点击运行则在查询完成后会看到查询结果,下方有将查询结果下载到本地的按钮

相关实践学习
使用PAI+LLaMA Factory微调Qwen2-VL模型,搭建文旅领域知识问答机器人
使用PAI和LLaMA Factory框架,基于全参方法微调 Qwen2-VL模型,使其能够进行文旅领域知识问答,同时通过人工测试验证了微调的效果。
机器学习概览及常见算法
机器学习(Machine Learning, ML)是人工智能的核心,专门研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能,它是使计算机具有智能的根本途径,其应用遍及人工智能的各个领域。 本课程将带你入门机器学习,掌握机器学习的概念和常用的算法。
目录
相关文章
|
16天前
|
机器学习/深度学习 数据采集 算法
量子机器学习入门:三种数据编码方法对比与应用
在量子机器学习中,数据编码方式决定了量子模型如何理解和处理信息。本文详解角度编码、振幅编码与基础编码三种方法,分析其原理、实现及适用场景,帮助读者选择最适合的编码策略,提升量子模型性能。
109 8
|
5月前
|
机器学习/深度学习 算法 数据挖掘
PyTabKit:比sklearn更强大的表格数据机器学习框架
PyTabKit是一个专为表格数据设计的新兴机器学习框架,集成了RealMLP等先进深度学习技术与优化的GBDT超参数配置。相比传统Scikit-Learn,PyTabKit通过元级调优的默认参数设置,在无需复杂超参调整的情况下,显著提升中大型数据集的性能表现。其简化API设计、高效训练速度和多模型集成能力,使其成为企业决策与竞赛建模的理想工具。
174 12
PyTabKit:比sklearn更强大的表格数据机器学习框架
|
8月前
|
机器学习/深度学习 数据采集 JSON
Pandas数据应用:机器学习预处理
本文介绍如何使用Pandas进行机器学习数据预处理,涵盖数据加载、缺失值处理、类型转换、标准化与归一化及分类变量编码等内容。常见问题包括文件路径错误、编码不正确、数据类型不符、缺失值处理不当等。通过代码案例详细解释每一步骤,并提供解决方案,确保数据质量,提升模型性能。
331 88
|
6月前
|
机器学习/深度学习 运维 监控
万亿参数模型训练神器:Kubeflow 2025量子加速版下载与TPU集群配置详解
Kubeflow 2025 是一个云原生机器学习操作系统,实现了四大突破性创新:量子混合训练(支持经典-量子混合神经网络协同计算)、神经符号系统集成(融合深度学习与逻辑推理引擎)、边缘智能联邦(5G MEC节点自动弹性扩缩容)和因果可解释性框架(集成Pearl、DoWhy等工具链)。该平台通过混合计算架构、先进的硬件配置矩阵和量子增强型安装流程,提供了从基础设施预配置到核心组件安装和安全加固的完整部署方案。此外,Kubeflow 2025 还涵盖全生命周期开发实战案例、智能运维监控体系、安全与合规框架以及高阶调试技巧,帮助用户高效构建和管理复杂的机器学习项目。
|
8月前
|
机器学习/深度学习 数据采集 算法
机器学习在生物信息学中的创新应用:解锁生物数据的奥秘
机器学习在生物信息学中的创新应用:解锁生物数据的奥秘
756 36
|
8月前
|
机器学习/深度学习 人工智能
Diff-Instruct:指导任意生成模型训练的通用框架,无需额外训练数据即可提升生成质量
Diff-Instruct 是一种从预训练扩散模型中迁移知识的通用框架,通过最小化积分Kullback-Leibler散度,指导其他生成模型的训练,提升生成性能。
236 11
Diff-Instruct:指导任意生成模型训练的通用框架,无需额外训练数据即可提升生成质量
|
6月前
|
机器学习/深度学习 传感器 数据采集
基于机器学习的数据分析:PLC采集的生产数据预测设备故障模型
本文介绍如何利用Python和Scikit-learn构建基于PLC数据的设备故障预测模型。通过实时采集温度、振动、电流等参数,进行数据预处理和特征提取,选择合适的机器学习模型(如随机森林、XGBoost),并优化模型性能。文章还分享了边缘计算部署方案及常见问题排查,强调模型预测应结合定期维护,确保系统稳定运行。
677 0
|
8月前
|
人工智能 Kubernetes Cloud Native
跨越鸿沟:PAI-DSW 支持动态数据挂载新体验
本文讲述了如何在 PAI-DSW 中集成和利用 Fluid 框架,以及通过动态挂载技术实现 OSS 等存储介质上数据集的快速接入和管理。通过案例演示,进一步展示了动态挂载功能的实际应用效果和优势。
|
9月前
|
机器学习/深度学习 人工智能 自然语言处理
模型训练数据-MinerU一款Pdf转Markdown软件
MinerU是由上海人工智能实验室OpenDataLab团队开发的开源智能数据提取工具,专长于复杂PDF文档的高效解析与提取。它能够将含有图片、公式、表格等多模态内容的PDF文档转化为Markdown格式,同时支持从网页和电子书中提取内容,显著提升了AI语料准备的效率。MinerU具备高精度的PDF模型解析工具链,能自动识别乱码,保留文档结构,并将公式转换为LaTeX格式,广泛适用于学术、财务、法律等领域。
1270 4
|
10月前
|
机器学习/深度学习 数据采集 数据处理
谷歌提出视觉记忆方法,让大模型训练数据更灵活
谷歌研究人员提出了一种名为“视觉记忆”的方法,结合了深度神经网络的表示能力和数据库的灵活性。该方法将图像分类任务分为图像相似性和搜索两部分,支持灵活添加和删除数据、可解释的决策机制以及大规模数据处理能力。实验结果显示,该方法在多个数据集上取得了优异的性能,如在ImageNet上实现88.5%的top-1准确率。尽管有依赖预训练模型等限制,但视觉记忆为深度学习提供了新的思路。
183 2

热门文章

最新文章