深度学习还是类脑计算?平头哥领衔全球专家研讨人工智能发展前景

简介: 11月24日,IEEE CASS-SH Artificial Intelligence For Industry Forum在阿里巴巴上海研究中心召开。本次会议是IEEE电路与系统协会(CASS)首次在亚洲举办的学术产业论坛,由阿里巴巴达摩院、平头哥半导体有限公司、以及上海交通大学联合承办。吸引来自海内外顶尖高校师生及产业界专家共计150余人到场,就AI未来技术趋势展开深入的交流。

摘要:11月24日,IEEE CASS-SH Artificial Intelligence For Industry Forum在阿里巴巴上海研究中心召开。本次会议是IEEE电路与系统协会(CASS)首次在亚洲举办的学术产业论坛,由阿里巴巴达摩院、平头哥半导体有限公司、以及上海交通大学联合承办。吸引来自海内外顶尖高校师生及产业界专家共计150余人到场,就AI未来技术趋势展开深入的交流。

论坛由阿里巴巴达摩院科学家,IEEE Fellow陈彦光主持,演讲嘉宾包括:
明尼苏达大学教授、IEEE Fellow Keshab K. Parhi;
华盛顿大学教授、IEEE Fellow Richard Shi;
新加坡南洋理工大学教授、新加坡TR35获得者 Arindam Basu;
全球首款异构融合类脑计算芯片“天机芯”核心研发成员、加州大学圣塔芭芭拉分校博士后邓磊;
阿里巴巴集团副总裁、平头哥半导体有限公司总经理戚肖宁;
阿里巴巴研究员、计算平台事业部PAI平台负责人林伟。

image.png

会上,Keshab K. Parhi教授作了题为“机器学习与深度学习系统:低功耗VLSI架构及应用”的主题演讲。他认为从降低神经网络加速器能耗的角度,即使在传统的卷积神经网络(CNN)领域,依然有很多潜在的方向尚待挖掘,此外在分布式系统、脉冲神经网络(spiking neural network)等其他方面,也有巨大的研究空间和前景。
邓磊博士向与会者介绍了其所在的清华大学研究团队发表在2019年8月份Nature正刊封面的工作——全球首款异构融合类脑计算芯片“天机芯“。这种人工智能神经芯片实现了在脉冲神经网络和人工神经网络两大领域的全项支持,提出了一种怎么样让现在的人工智能工业走向真正的泛人工智能的新思路,具有里程碑意义。
阿里巴巴集团副总裁、平头哥半导体公司有限总经理戚肖宁博士,详细阐述了平头哥定位AIoT时代芯片基础设施提供者的相关内容。他强调,在云侧,AI芯片“含光800”将推理性能推向极致,并通过阿里云为全球用户输出强大算力。在端侧,平头哥处理器IP自主指令集“玄铁8”系列,累计授权出货量超10亿;开源RISC-V指令集“玄铁9”系列,以其“910”性能领先全球;芯片设计平台“无剑” 提供集芯片架构、基础软件、算法与开发工具于一体的解决方案。
Arindam Basu博士在“类脑工程2.0:边缘计算中的人工智能”的主题演讲中,从电路,硬件架构和算法三个层面讲述了类脑计算V2.0的新特点,他指出新材料器件和数据安全将是未来的发展趋势,这个时代将是类脑计算V2.0发展的最大机会。
最后,在陈彦光博士的主持下,Richard Shi博士、林伟及所有主题演讲嘉宾,共同围绕 “剑宗与气宗:人工智能中的深度学习与类脑计算”的话题,进行了深入的圆桌讨论。

image.png

人才招聘

达摩院-Neuromorphic Architecture Research Scientist

达摩院-Neuromorphic Algorithm Research Scientist

达摩院-Video Algorithm-Architecture Co-Design Scientist

达摩院-Near Data Processing Accelerator Architect

达摩院-Algorithm/software/hardware co-design research scientist

咨询邮箱:yuli.liuyuli@alibaba-inc.com

相关文章
|
1月前
|
机器学习/深度学习 人工智能 安全
探索AI的未来:从机器学习到深度学习
【10月更文挑战第28天】本文将带你走进AI的世界,从机器学习的基本概念到深度学习的复杂应用,我们将一起探索AI的未来。你将了解到AI如何改变我们的生活,以及它在未来可能带来的影响。无论你是AI专家还是初学者,这篇文章都将为你提供新的视角和思考。让我们一起探索AI的奥秘,看看它将如何塑造我们的未来。
77 3
|
12天前
|
机器学习/深度学习 人工智能 算法
猫狗宠物识别系统Python+TensorFlow+人工智能+深度学习+卷积网络算法
宠物识别系统使用Python和TensorFlow搭建卷积神经网络,基于37种常见猫狗数据集训练高精度模型,并保存为h5格式。通过Django框架搭建Web平台,用户上传宠物图片即可识别其名称,提供便捷的宠物识别服务。
157 55
|
1月前
|
机器学习/深度学习 人工智能 TensorFlow
人工智能浪潮下的自我修养:从Python编程入门到深度学习实践
【10月更文挑战第39天】本文旨在为初学者提供一条清晰的道路,从Python基础语法的掌握到深度学习领域的探索。我们将通过简明扼要的语言和实际代码示例,引导读者逐步构建起对人工智能技术的理解和应用能力。文章不仅涵盖Python编程的基础,还将深入探讨深度学习的核心概念、工具和实战技巧,帮助读者在AI的浪潮中找到自己的位置。
|
22天前
|
机器学习/深度学习 人工智能 算法
【宠物识别系统】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+图像识别
宠物识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了37种常见的猫狗宠物种类数据集【'阿比西尼亚猫(Abyssinian)', '孟加拉猫(Bengal)', '暹罗猫(Birman)', '孟买猫(Bombay)', '英国短毛猫(British Shorthair)', '埃及猫(Egyptian Mau)', '缅因猫(Maine Coon)', '波斯猫(Persian)', '布偶猫(Ragdoll)', '俄罗斯蓝猫(Russian Blue)', '暹罗猫(Siamese)', '斯芬克斯猫(Sphynx)', '美国斗牛犬
122 29
【宠物识别系统】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+图像识别
|
22天前
|
机器学习/深度学习 人工智能 自然语言处理
揭秘人工智能:深度学习的奥秘与实践
在本文中,我们将深入浅出地探索深度学习的神秘面纱。从基础概念到实际应用,你将获得一份简明扼要的指南,助你理解并运用这一前沿技术。我们避开复杂的数学公式和冗长的论述,以直观的方式呈现深度学习的核心原理和应用实例。无论你是技术新手还是有经验的开发者,这篇文章都将为你打开一扇通往人工智能新世界的大门。
|
27天前
|
机器学习/深度学习 人工智能 自然语言处理
揭秘AI:深度学习的奥秘与实践
本文将深入浅出地探讨人工智能中的一个重要分支——深度学习。我们将从基础概念出发,逐步揭示深度学习的原理和工作机制。通过生动的比喻和实际代码示例,本文旨在帮助初学者理解并应用深度学习技术,开启AI之旅。
|
28天前
|
机器学习/深度学习 人工智能 自然语言处理
深入理解人工智能中的深度学习技术及其最新进展
深入理解人工智能中的深度学习技术及其最新进展
|
28天前
|
机器学习/深度学习 人工智能 自然语言处理
深入理解人工智能中的深度学习技术及其最新进展
深入理解人工智能中的深度学习技术及其最新进展
|
1月前
|
机器学习/深度学习 人工智能 自然语言处理
人工智能与深度学习:探索未来技术的无限可能
在21世纪,人工智能(AI)和深度学习已经成为推动科技进步的重要力量。本文将深入探讨这两种技术的基本概念、发展历程以及它们如何共同塑造未来的科技景观。我们将分析人工智能的最新趋势,包括自然语言处理、计算机视觉和强化学习,并讨论这些技术在现实世界中的应用。此外,我们还将探讨深度学习的工作原理,包括神经网络、卷积神经网络(CNN)和循环神经网络(RNN),并分析这些模型如何帮助解决复杂的问题。通过本文,读者将对人工智能和深度学习有更深入的了解,并能够预见这些技术将如何继续影响我们的世界。
63 7
|
1月前
|
机器学习/深度学习 人工智能 算法
基于Python深度学习的【垃圾识别系统】实现~TensorFlow+人工智能+算法网络
垃圾识别分类系统。本系统采用Python作为主要编程语言,通过收集了5种常见的垃圾数据集('塑料', '玻璃', '纸张', '纸板', '金属'),然后基于TensorFlow搭建卷积神经网络算法模型,通过对图像数据集进行多轮迭代训练,最后得到一个识别精度较高的模型文件。然后使用Django搭建Web网页端可视化操作界面,实现用户在网页端上传一张垃圾图片识别其名称。
84 0
基于Python深度学习的【垃圾识别系统】实现~TensorFlow+人工智能+算法网络