阿里AI 硬件基准测试AI Matrix亮相AIIA人工智能开发者大会、2018中国计算机大会

简介: 2018年9月,阿里巴巴正式发布了第一版AI硬件测评的Benchmarks --- AI Matrix。

image.png

今年9月,阿里巴巴正式发布了第一版AI硬件测评的Benchmarks --- AI Matrix。

其两个主要定位,一方面面向于阿里巴巴以及行业AI软硬件开发者做硬件选型和测评,为芯片应用产品化提供输入,它是一项可以为硬件打分的测试集。另一方面,希望将 AI Matrix作为AI 硬件的基准测试,让更多的开发者一起参与。

在近日举行的AIIA人工智能开发者大会、2018 中国计算机大会 (CNCC2018)两场大会上,阿里巴巴AI Matrix架构师魏巍在开源推进组论坛分享了AI Matrix的发展近况,从AI Matrix的创立目标、应用内容、以及接下来的推进计划,希望有更多志同道合的开发者能一起加入。

image.png

“阿里巴巴在数据和算法上有明显的积累和优势,同时有非常丰富的业务应用场景。而厂商的产品设计和规划,必须要结合应用场景需求,做到Domain Specific软硬件的完美结合,这就要定出一套合理的评估衡量标准,这样的Benchmark是AI硬件产品化一个硬需求。” 阿里巴巴AI Matrix构架师魏巍表示。

阿里巴巴的大规模业务需求就已经对Benchmarks提出了前所未有的挑战,AI Matrix团队认为,Benchmarks不应该仅仅是一些简单的搜集和罗列,不仅需要有代表性,能够真实的反映业务的情况,而且要有灵活性和适应性,能够跟踪业务的变化,随之不断的推陈出新。

因此,AI Matrix 架构师魏巍设定了平台化,灵活性,专业性以及可移植性四个主要方向,并创新性地提出了合成模型StatsNet来帮助开发者实现信息及时灵活以及轻量级地落地,促进AI加速器及时准确的迭代。

合成模型是AIMatrix中的重要一环,它利用统计的方法并结合基因算法寻找最优解,从而自动化的生成一个能从统计量上代表整个模型池的深度神经网络模型。关于合成模型的方法论也得到了相关领域内专家的认同,论文的poster也由架构师魏巍在达拉斯举行的SC18超算大会上分享给大家。

image.png

AI Matrix可以帮助阿里巴巴以及开发者解决以下四个关键性问题:

  1. 通过调研和集群信息收集,真实反应阿里巴巴AI应用和模型使用的现实情况
  2. 基于现有信息,对包括AI加速器解决方案的评估和选型制定一个标准
  3. 利用这些头部用例进一步推进软硬件融合,提高硬件的利用率
  4. 结合行业前沿的算法,对AI加速器的架构瓶颈给出建议

AI Matrix的定位将不仅仅是一个简单的测试集,而是在将来提供完整的工具链以及解决方案。在定位上,除了在做好Benchmark本身最基本的评测功能之外,阿里巴巴也会把它拓展到应用和资源优化的领域,不仅做到Domain Specific软硬件结合,同时也能做到Agile Design架构的快速迭代。

根据权威的行业分析报告,AI芯片的市场将会从今年的70亿美金增长到2025年600亿美金的市场。我们相信AI Matrix将会帮助芯片厂商更好贴合应用需求,改进和提高AI 芯片具备更好的产品化能力和竞争力。

目录
相关文章
|
15天前
|
人工智能 自然语言处理 测试技术
从人工到AI驱动:天猫测试全流程自动化变革实践
天猫技术质量团队探索AI在测试全流程的落地应用,覆盖需求解析、用例生成、数据构造、执行验证等核心环节。通过AI+自然语言驱动,实现测试自动化、可溯化与可管理化,在用例生成、数据构造和执行校验中显著提效,推动测试体系从人工迈向AI全流程自动化,提升效率40%以上,用例覆盖超70%,并构建行业级知识资产沉淀平台。
从人工到AI驱动:天猫测试全流程自动化变革实践
|
15天前
|
人工智能 运维 监控
当AI遇上自动化:运维测试终于不“加班”了
当AI遇上自动化:运维测试终于不“加班”了
151 9
|
9天前
|
数据采集 存储 人工智能
从0到1:天猫AI测试用例生成的实践与突破
本文系统阐述了天猫技术团队在AI赋能测试领域的深度实践与探索,讲述了智能测试用例生成的落地路径。
从0到1:天猫AI测试用例生成的实践与突破
|
2月前
|
人工智能 Java API
AI 超级智能体全栈项目阶段一:AI大模型概述、选型、项目初始化以及基于阿里云灵积模型 Qwen-Plus实现模型接入四种方式(SDK/HTTP/SpringAI/langchain4j)
本文介绍AI大模型的核心概念、分类及开发者学习路径,重点讲解如何选择与接入大模型。项目基于Spring Boot,使用阿里云灵积模型(Qwen-Plus),对比SDK、HTTP、Spring AI和LangChain4j四种接入方式,助力开发者高效构建AI应用。
947 122
AI 超级智能体全栈项目阶段一:AI大模型概述、选型、项目初始化以及基于阿里云灵积模型 Qwen-Plus实现模型接入四种方式(SDK/HTTP/SpringAI/langchain4j)
|
2月前
|
人工智能 数据可视化 测试技术
AI测试平台自动遍历:低代码也能玩转全链路测试
AI测试平台的自动遍历功能,通过低代码配置实现Web和App的自动化测试。用户只需提供入口链接或安装包及简单配置,即可自动完成页面结构识别、操作验证,并生成可视化报告,大幅提升测试效率,特别适用于高频迭代项目。
|
2月前
|
人工智能 测试技术 调度
写用例写到怀疑人生?AI 智能测试平台帮你一键生成!
霍格沃兹测试开发学社推出AI智能测试用例生成功能,结合需求文档一键生成高质量测试用例,大幅提升效率,减少重复劳动。支持自定义提示词、多文档分析与批量管理,助力测试人员高效完成测试设计,释放更多时间投入核心分析工作。平台已开放内测,欢迎体验!
|
2月前
|
人工智能 JavaScript 算法
Playwright携手MCP:AI智能体实现自主化UI回归测试
MCP 协议使得 AI 能够通过 Playwright 操作浏览器,其中快照生成技术将页面状态转化为 LLM 可理解的文本,成为驱动自动化测试的关键。该方式适用于探索性测试和快速验证,但目前仍面临快照信息缺失、元素定位不稳定、成本高、复杂场景适应性差以及结果确定性不足等挑战。人机协同被认为是未来更可行的方向,AI 负责执行固定流程,人类则专注策略与验证。
|
2月前
|
人工智能 Java 开发者
阿里出手!Java 开发者狂喜!开源 AI Agent 框架 JManus 来了,初次见面就心动~
JManus是阿里开源的Java版OpenManus,基于Spring AI Alibaba框架,助力Java开发者便捷应用AI技术。支持多Agent框架、网页配置、MCP协议及PLAN-ACT模式,可集成多模型,适配阿里云百炼平台与本地ollama。提供Docker与源码部署方式,具备无限上下文处理能力,适用于复杂AI场景。当前仍在完善模型配置等功能,欢迎参与开源共建。
1075 58
阿里出手!Java 开发者狂喜!开源 AI Agent 框架 JManus 来了,初次见面就心动~
|
2月前
|
人工智能 数据处理 云栖大会
云栖现场|让评测与标注成为AI进化引擎!阿里发布全新评测平台,3大创新评测集亮相
云栖现场|让评测与标注成为AI进化引擎!阿里发布全新评测平台,3大创新评测集亮相
267 9
云栖现场|让评测与标注成为AI进化引擎!阿里发布全新评测平台,3大创新评测集亮相
|
2月前
|
机器学习/深度学习 人工智能 自然语言处理
如何让AI更“聪明”?VLM模型的优化策略与测试方法全解析​
本文系统解析视觉语言模型(VLM)的核心机制、推理优化、评测方法与挑战。涵盖多模态对齐、KV Cache优化、性能测试及主流基准,助你全面掌握VLM技术前沿。建议点赞收藏,深入学习。
431 8
下一篇
开通oss服务