Python基于 ImageAI 模块实践 idenprof数据集识别预测分析

本文涉及的产品
图像搜索,7款服务类型 1个月
简介: Python基于 ImageAI 模块实践 idenprof数据集识别预测分析       图像识别早已不是很新鲜的话题了,很多数据处理的任务到最后都会归为图像识别中,在之前的很多工作中,我陆陆续续也接触了很多相关的工作,从最开始数据处理,到模型搭建与最终上线也都经历,大多数时候模型都是自己搭建的,虽然说现在keras的出现极大地简化了模型的搭建工作,但是整个过程还是需要自己去实践完成的,对于很多的初学者来说并不是很容易的。

Python基于 ImageAI 模块实践 idenprof数据集识别预测分析
       图像识别早已不是很新鲜的话题了,很多数据处理的任务到最后都会归为图像识别中,在之前的很多工作中,我陆陆续续也接触了很多相关的工作,从最开始数据处理,到模型搭建与最终上线也都经历,大多数时候模型都是自己搭建的,虽然说现在keras的出现极大地简化了模型的搭建工作,但是整个过程还是需要自己去实践完成的,对于很多的初学者来说并不是很容易的。

      今天发现了一个好玩的库——ImageAI,简单的说一下我的理解就是对keras的又一层封装,但又不全是这样。ImageAI简化了整个图像识别和目标检测的工作,今天想来简单看看,整个模块的能力。

     使用的使用网上公开的数据集 idenprof ,分为train和test两个数据集,每个集合里面共有10个类别,数据集截图如下:

       具体实践如下:
 

!usr/bin/env python

encoding:utf-8

from future import division

"""
__Author__:沂水寒城
功能: python基于 ImageAI 模块实现 idenprof 数据集预测识别
当前官网中 ImageAI 主要提供四种类型的预测模型分别如下:
SqueezeNet(预测速度最快 正确率中等)
ResNet50 (预测速度快 正确率较高)
InceptionV3(预测速度慢 正确率高)
DenseNet121(预测速度更慢 正确率最高)
"""

import os
import threading
from imageai.Prediction import ImagePrediction
from imageai.Prediction.Custom import ModelTraining
from imageai.Prediction.Custom import CustomImagePrediction

def modelPredictDemo(model_path='officeModels/resnet_model_ex-020_acc-0.651714_idenprof.h5',

                 class_path='officeModels/model_class_idenprof.json',
                 pic_dir='idenprofTestPic/',classNum=10,resNum=1,flag=True):
'''
图像识别模型demo
''' 
right=0
if flag:
    prediction=CustomImagePrediction()  
else:
    prediction=ImagePrediction()
prediction.setModelTypeAsResNet()
prediction.setModelPath(model_path)
prediction.setJsonPath(class_path)
prediction.loadModel(num_objects=classNum)
all_files=[]
pic_list=os.listdir(pic_dir)  
for one_pic in pic_list:
    all_files.append(pic_dir+one_pic)
for one_pic in all_files:
    predictions,probabilitys=prediction.predictImage(one_pic,result_count=resNum)
    true_label=one_pic.split('/')[-1].split('.')[0].strip()
    for predict,probability in zip(predictions,probabilitys):
        print(true_label,'===>',predict, " : ", str(probability))
        if true_label.split('-')[0].strip()==predict:
            right+=1
acc=right/len(all_files)
print('Accuracy: ',acc)

if __name__=='__main__':

modelPredictDemo(model_path='officeModels/resnet_model_ex-020_acc-0.651714_idenprof.h5',
                 class_path='officeModels/model_class_idenprof.json',
                 pic_dir='idenprofTestPic/',classNum=10,resNum=1,flag=True)

      模型输出如下:

      由于自己的PC机太次了,我没有选择去自己训练模型,直接下载了官方提供的预训练模型,随机抽取了250张图片数据作为测试使用,粗略地计算了一下准确度达到了55.64%以上。

      感觉ImageAI使用起来的确是简单了很多,但是模型的种类和灵活性反而不如自己搭建模型了,这里更像是一个社区,自己可以贡献自己的数据集和预训练模型供别人使用,总之,好的东西总是会为开发者提供便利的,记录学习!

作者:Together_CZ
来源:CSDN
原文:https://blog.csdn.net/Together_CZ/article/details/96714163
版权声明:本文为博主原创文章,转载请附上博文链接!

相关实践学习
基于函数计算实现AI推理
本场景基于函数计算建立一个TensorFlow Serverless AI推理平台。
相关文章
|
4天前
|
JavaScript 前端开发 网络协议
从理论到实践:全面剖析Python Web应用中的WebSocket实时通信机制
【7月更文挑战第17天】WebSocket在实时Web应用中扮演重要角色,提供全双工通信,减少延迟。本文详述了Python中使用`websockets`库创建服务器的步骤,展示了一个简单的echo服务器示例,监听8765端口,接收并回显客户端消息。客户端通过JavaScript与服务器交互,实现双向通信。了解WebSocket的握手、传输和关闭阶段,有助于开发者有效利用WebSocket提升应用性能。随着实时需求增长,掌握WebSocket技术至关重要。
17 6
|
2天前
|
存储 开发者 Python
从理论到实践:Python中Trie树与Suffix Tree的完美结合,开启编程新篇章!
【7月更文挑战第19天】在编程实践中,Trie树和Suffix Tree优化了字符串处理。Trie树用于快速拼写检查,如在构建词库后,能高效判断单词是否存在。Suffix Tree则助力文本相似度检测,找寻共同子串。通过Python示例展示了Trie树插入和搜索方法,并指出Suffix Tree虽复杂但能提升性能。结合两者,实现复杂功能,展现数据结构的强大。
16 3
|
3天前
|
监控 前端开发 JavaScript
构建高效实时应用:Python WebSocket在前后端分离架构中的实践
【7月更文挑战第18天】WebSocket助力实时Web应用,通过一次握手建立持久连接,解决HTTP实时性问题。Python中可用Flask-SocketIO创建WebSocket服务器,前端JavaScript使用Socket.IO库连接。确保安全可采用HTTPS、认证及跨域限制。示例代码展示如何实现双向实时通信。
20 4
|
8天前
|
SQL 并行计算 API
Dask是一个用于并行计算的Python库,它提供了类似于Pandas和NumPy的API,但能够在大型数据集上进行并行计算。
Dask是一个用于并行计算的Python库,它提供了类似于Pandas和NumPy的API,但能够在大型数据集上进行并行计算。
|
2天前
|
JSON 中间件 数据处理
实践出真知:通过项目学习Python Web框架的路由与中间件设计
【7月更文挑战第19天】探索Python Web开发,掌握Flask或Django的关键在于理解路由和中间件。路由连接URL与功能,如Flask中@app.route()定义请求响应路径。中间件在请求处理前后执行,提供扩展功能,如日志、认证。通过实践项目,不仅学习理论,还能提升构建高效Web应用的能力。示例代码展示路由定义及模拟中间件行为,强调动手实践的重要性。
|
6天前
|
Go C# Python
Python 的 shutil 模块
`shutil`是Python标准库中的模块,提供高级文件和目录操作,如复制、移动、重命名、删除以及创建和删除目录。它扩展了`os`模块的功能,支持递归操作,例如`shutil.copytree()`用于递归复制目录,`shutil.rmtree()`用于递归删除目录。`shutil.move()`不仅移动文件,还可用于重命名。`shutil.remove()`和`shutil.rmtree()`分别用于删除文件和目录。这个模块对于文件管理任务非常实用。
|
6天前
|
设计模式 机器学习/深度学习 测试技术
设计模式转型:从传统同步到Python协程异步编程的实践与思考
【7月更文挑战第15天】探索从同步到Python协程异步编程的转变,异步处理I/O密集型任务提升效率。async/await关键词定义异步函数,asyncio库管理事件循环。面对挑战,如思维转变、错误处理和调试,可通过逐步迁移、学习资源、编写测试和使用辅助库来适应。通过实践和学习,开发者能有效优化性能和响应速度。
22 3
|
6天前
|
缓存 数据库连接 API
Python模块如何影响代码的可读性?
【7月更文挑战第15天】Python模块如何影响代码的可读性?
10 3
|
6天前
|
并行计算 大数据 编译器
Python模块如何影响性能?
【7月更文挑战第15天】Python模块如何影响性能?
4 1
|
6天前
|
数据采集 程序员 开发者
Python模块
【7月更文挑战第15天】Python模块
4 1