Python基于 ImageAI 模块实践 idenprof数据集识别预测分析

本文涉及的产品
图像搜索,7款服务类型 1个月
简介: Python基于 ImageAI 模块实践 idenprof数据集识别预测分析       图像识别早已不是很新鲜的话题了,很多数据处理的任务到最后都会归为图像识别中,在之前的很多工作中,我陆陆续续也接触了很多相关的工作,从最开始数据处理,到模型搭建与最终上线也都经历,大多数时候模型都是自己搭建的,虽然说现在keras的出现极大地简化了模型的搭建工作,但是整个过程还是需要自己去实践完成的,对于很多的初学者来说并不是很容易的。

Python基于 ImageAI 模块实践 idenprof数据集识别预测分析
       图像识别早已不是很新鲜的话题了,很多数据处理的任务到最后都会归为图像识别中,在之前的很多工作中,我陆陆续续也接触了很多相关的工作,从最开始数据处理,到模型搭建与最终上线也都经历,大多数时候模型都是自己搭建的,虽然说现在keras的出现极大地简化了模型的搭建工作,但是整个过程还是需要自己去实践完成的,对于很多的初学者来说并不是很容易的。

      今天发现了一个好玩的库——ImageAI,简单的说一下我的理解就是对keras的又一层封装,但又不全是这样。ImageAI简化了整个图像识别和目标检测的工作,今天想来简单看看,整个模块的能力。

     使用的使用网上公开的数据集 idenprof ,分为train和test两个数据集,每个集合里面共有10个类别,数据集截图如下:

       具体实践如下:
 

!usr/bin/env python

encoding:utf-8

from future import division

"""
__Author__:沂水寒城
功能: python基于 ImageAI 模块实现 idenprof 数据集预测识别
当前官网中 ImageAI 主要提供四种类型的预测模型分别如下:
SqueezeNet(预测速度最快 正确率中等)
ResNet50 (预测速度快 正确率较高)
InceptionV3(预测速度慢 正确率高)
DenseNet121(预测速度更慢 正确率最高)
"""

import os
import threading
from imageai.Prediction import ImagePrediction
from imageai.Prediction.Custom import ModelTraining
from imageai.Prediction.Custom import CustomImagePrediction

def modelPredictDemo(model_path='officeModels/resnet_model_ex-020_acc-0.651714_idenprof.h5',

                 class_path='officeModels/model_class_idenprof.json',
                 pic_dir='idenprofTestPic/',classNum=10,resNum=1,flag=True):
'''
图像识别模型demo
''' 
right=0
if flag:
    prediction=CustomImagePrediction()  
else:
    prediction=ImagePrediction()
prediction.setModelTypeAsResNet()
prediction.setModelPath(model_path)
prediction.setJsonPath(class_path)
prediction.loadModel(num_objects=classNum)
all_files=[]
pic_list=os.listdir(pic_dir)  
for one_pic in pic_list:
    all_files.append(pic_dir+one_pic)
for one_pic in all_files:
    predictions,probabilitys=prediction.predictImage(one_pic,result_count=resNum)
    true_label=one_pic.split('/')[-1].split('.')[0].strip()
    for predict,probability in zip(predictions,probabilitys):
        print(true_label,'===>',predict, " : ", str(probability))
        if true_label.split('-')[0].strip()==predict:
            right+=1
acc=right/len(all_files)
print('Accuracy: ',acc)

if __name__=='__main__':

modelPredictDemo(model_path='officeModels/resnet_model_ex-020_acc-0.651714_idenprof.h5',
                 class_path='officeModels/model_class_idenprof.json',
                 pic_dir='idenprofTestPic/',classNum=10,resNum=1,flag=True)

      模型输出如下:

      由于自己的PC机太次了,我没有选择去自己训练模型,直接下载了官方提供的预训练模型,随机抽取了250张图片数据作为测试使用,粗略地计算了一下准确度达到了55.64%以上。

      感觉ImageAI使用起来的确是简单了很多,但是模型的种类和灵活性反而不如自己搭建模型了,这里更像是一个社区,自己可以贡献自己的数据集和预训练模型供别人使用,总之,好的东西总是会为开发者提供便利的,记录学习!

作者:Together_CZ
来源:CSDN
原文:https://blog.csdn.net/Together_CZ/article/details/96714163
版权声明:本文为博主原创文章,转载请附上博文链接!

相关文章
|
21天前
|
机器学习/深度学习 数据采集 TensorFlow
使用Python实现智能食品消费模式分析的深度学习模型
使用Python实现智能食品消费模式分析的深度学习模型
113 70
|
10天前
|
Python
Python Internet 模块
Python Internet 模块。
104 74
|
23天前
|
机器学习/深度学习 数据采集 TensorFlow
使用Python实现智能食品消费习惯分析的深度学习模型
使用Python实现智能食品消费习惯分析的深度学习模型
125 68
|
19天前
|
机器学习/深度学习 数据采集 数据挖掘
使用Python实现智能食品消费市场分析的深度学习模型
使用Python实现智能食品消费市场分析的深度学习模型
96 36
|
13天前
|
数据可视化 算法 数据挖掘
Python量化投资实践:基于蒙特卡洛模拟的投资组合风险建模与分析
蒙特卡洛模拟是一种利用重复随机抽样解决确定性问题的计算方法,广泛应用于金融领域的不确定性建模和风险评估。本文介绍如何使用Python和EODHD API获取历史交易数据,通过模拟生成未来价格路径,分析投资风险与收益,包括VaR和CVaR计算,以辅助投资者制定合理决策。
60 15
|
17天前
|
机器学习/深度学习 数据采集 数据挖掘
使用Python实现智能食品消费趋势分析的深度学习模型
使用Python实现智能食品消费趋势分析的深度学习模型
77 18
|
21天前
|
测试技术 开发者 Python
探索Python中的装饰器:从入门到实践
装饰器,在Python中是一块强大的语法糖,它允许我们在不修改原函数代码的情况下增加额外的功能。本文将通过简单易懂的语言和实例,带你一步步了解装饰器的基本概念、使用方法以及如何自定义装饰器。我们还将探讨装饰器在实战中的应用,让你能够在实际编程中灵活运用这一技术。
37 7
|
20天前
|
存储 缓存 Python
Python中的装饰器深度解析与实践
在Python的世界里,装饰器如同一位神秘的魔法师,它拥有改变函数行为的能力。本文将揭开装饰器的神秘面纱,通过直观的代码示例,引导你理解其工作原理,并掌握如何在实际项目中灵活运用这一强大的工具。从基础到进阶,我们将一起探索装饰器的魅力所在。
|
22天前
|
开发者 Python
Python中的装饰器:从入门到实践
本文将深入探讨Python的装饰器,这一强大工具允许开发者在不修改现有函数代码的情况下增加额外的功能。我们将通过实例学习如何创建和应用装饰器,并探索它们背后的原理和高级用法。
35 5
|
文字识别 开发工具 Python
Python编程:通过百度文字识别提取表格数据
Python编程:通过百度文字识别提取表格数据
227 0
Python编程:通过百度文字识别提取表格数据