Elasticsearch实战——全文检索架构设计

本文涉及的产品
云数据库 RDS MySQL,集群系列 2核4GB
推荐场景:
搭建个人博客
检索分析服务 Elasticsearch 版,2核4GB开发者规格 1个月
RDS MySQL Serverless 基础系列,0.5-2RCU 50GB
简介: 本文给出架构设计和实现原理。

1、题记

近几年,Elasticsearch(以下简称ES)作为开源的搜索引擎已经在国内得到越来越多的应用推广,在日志分析领域应用场景尤为广泛。传统的数据库Mysql、Oracle或者非关系型数据库Mongo作为基础存储的企业要想实现业务数据的全文检索,该如何实现呢?

2、理清楚使用ES的初衷

2.1 大数据背景下数据量的积累与数据应用疲软矛盾一直存在。

大数据的风已经刮了几年,西安交大徐宗本院士也强调“推动大数据产业必须解决好定位、规划、切入点、数据标准、开发共享等问题,互联互通是基础、定制化服务是中心、懂数据会分析是关键”。可见,数据分析的重要性。

传统企业的数据存储存在以下问题:

问题1:由于模型受限,传统企业的数据大多存储在关系型数据库Mysql、Oracle,非结构化数据存储在Mongo中。数据量也能积累到TB甚至PB级。

只能进行结构化的检索类似”select * from table where col like ‘%xxx%’显然不能满足纷繁复杂的业务需求。

问题2:数据是死数据,数据的BI可视化展示需要专业团队开发,但不能得到很好的分析效果。

以上问题形成了数据量累计到一定的量,但数据得不到很好的应用分析之间的矛盾。

2.2 在保持基础数据库不动的同时,新增全文检索,更好、更快的从亿万数据中获取检索服务。

不想抛弃原有的数据存储结构,想在原有数据存储的基础上新增全文检索。

3、传统存储模型上的ES全文检索架构

image.png

3.1 采集层

解决数据源头问题。
业务模型的不同,有的数据是机器设备(软件、硬件)产生的,有的则需要自己开发爬虫(如:python的scrapy)进行互联网全网爬取或者定向网站爬取。

3.2 Mysql基础存储层

基础数据的存储。
定义好库表结构、关联关系、主键、外键结构来存储结构化数据。
或者非结构化数据,采用Mongo键值对的方式存储。

3.3 ES检索层

实现基础数据的同步。这里是关键,传统的业务模型会在Mysql基础层的基础上,开展业务数据分析通常是以下步骤:

步骤 1:后台数据——库表分散的建立视图,对数据做分门别类的统计(基于order by, group by等操作)。

步骤 2:前端可视化——通过 Angularjs 进行数据渲染,并通过百度的Echart模型进行可视化展示。

ES检索层的准备如下:

方式1.数据同步——基础业务数据由基础库Mysql、Oracle或Mongolia同步到ES中,大多需要借助logstash实现。

同步策略参见:http://blog.csdn.net/laoyang360/article/details/72792865

方式2.数据同步——数据存成json格式文件,然后借助阿里的fastjson解析,以bulk方式批量导入ES。

3.4 对外接口及可视化层

实现ES全文检索、Tag检索等对外服务、数据的分类统计、排序等可视化展示。
java接口可以参考jest实现。

可视化可以借助kibana实现。这里就体现出elkstack的优势,logstash完成基础数据同步,es完成数据存储和检索,kibana完成数据可视化。

4.架构小结

以上是我研究ES近一年时间的实战总结。其中,ES检索、kibana可视化的深入应用还有很长的路要走。

欢迎就架构问题深入留言探讨!


作者:铭毅天下
转载请标明出处,原文地址:
http://blog.csdn.net/laoyang360/article/details/74090398

相关实践学习
使用阿里云Elasticsearch体验信息检索加速
通过创建登录阿里云Elasticsearch集群,使用DataWorks将MySQL数据同步至Elasticsearch,体验多条件检索效果,简单展示数据同步和信息检索加速的过程和操作。
ElasticSearch 入门精讲
ElasticSearch是一个开源的、基于Lucene的、分布式、高扩展、高实时的搜索与数据分析引擎。根据DB-Engines的排名显示,Elasticsearch是最受欢迎的企业搜索引擎,其次是Apache Solr(也是基于Lucene)。 ElasticSearch的实现原理主要分为以下几个步骤: 用户将数据提交到Elastic Search 数据库中 通过分词控制器去将对应的语句分词,将其权重和分词结果一并存入数据 当用户搜索数据时候,再根据权重将结果排名、打分 将返回结果呈现给用户 Elasticsearch可以用于搜索各种文档。它提供可扩展的搜索,具有接近实时的搜索,并支持多租户。
相关文章
|
3月前
|
存储 分布式计算 大数据
大数据-169 Elasticsearch 索引使用 与 架构概念 增删改查
大数据-169 Elasticsearch 索引使用 与 架构概念 增删改查
78 3
|
9天前
|
存储 JavaScript 开发工具
基于HarmonyOS 5.0(NEXT)与SpringCloud架构的跨平台应用开发与服务集成研究【实战】
本次的.HarmonyOS Next ,ArkTS语言,HarmonyOS的元服务和DevEco Studio 开发工具,为开发者提供了构建现代化、轻量化、高性能应用的便捷方式。这些技术和工具将帮助开发者更好地适应未来的智能设备和服务提供方式。
33 8
基于HarmonyOS 5.0(NEXT)与SpringCloud架构的跨平台应用开发与服务集成研究【实战】
|
19天前
|
弹性计算 Java 数据库
Web应用上云经典架构实战
本课程详细介绍了Web应用上云的经典架构实战,涵盖前期准备、配置ALB、创建服务器组和监听、验证ECS公网能力、环境配置(JDK、Maven、Node、Git)、下载并运行若依框架、操作第二台ECS以及验证高可用性。通过具体步骤和命令,帮助学员快速掌握云上部署的全流程。
|
19天前
|
搜索推荐 API 定位技术
一文看懂Elasticsearch的技术架构:高效、精准的搜索神器
Elasticsearch 是一个基于 Lucene 的开源搜索引擎,以其强大的全文本搜索功能和快速的倒排索引技术著称。它不仅支持数字、文本、地理位置等多类型数据,还提供了可调相关度分数、高级查询 DSL 等功能。Elasticsearch 的核心技术流程包括数据导入、解析、索引化、查询处理、得分计算及结果返回,确保高效处理大规模数据并提供准确的搜索结果。通过 RESTful API、Logstash 和 Filebeat 等工具,Elasticsearch 可以从多种数据源中导入和解析数据,支持复杂的查询需求。
77 0
|
19天前
|
存储 负载均衡 监控
揭秘 Elasticsearch 集群架构,解锁大数据处理神器
Elasticsearch 是一个强大的分布式搜索和分析引擎,广泛应用于大数据处理、实时搜索和分析。本文深入探讨了 Elasticsearch 集群的架构和特性,包括高可用性和负载均衡,以及主节点、数据节点、协调节点和 Ingest 节点的角色和功能。
40 0
|
2月前
|
消息中间件 Java Kafka
实时数仓Kappa架构:从入门到实战
【11月更文挑战第24天】随着大数据技术的不断发展,企业对实时数据处理和分析的需求日益增长。实时数仓(Real-Time Data Warehouse, RTDW)应运而生,其中Kappa架构作为一种简化的数据处理架构,通过统一的流处理框架,解决了传统Lambda架构中批处理和实时处理的复杂性。本文将深入探讨Kappa架构的历史背景、业务场景、功能点、优缺点、解决的问题以及底层原理,并详细介绍如何使用Java语言快速搭建一套实时数仓。
226 4
|
2月前
|
存储 索引
Elasticsearch分布式架构
【11月更文挑战第2天】
43 1
|
2月前
|
运维 NoSQL Java
后端架构演进:微服务架构的优缺点与实战案例分析
【10月更文挑战第28天】本文探讨了微服务架构与单体架构的优缺点,并通过实战案例分析了微服务架构在实际应用中的表现。微服务架构具有高内聚、低耦合、独立部署等优势,但也面临分布式系统的复杂性和较高的运维成本。通过某电商平台的实际案例,展示了微服务架构在提升系统性能和团队协作效率方面的显著效果,同时也指出了其带来的挑战。
95 4
|
3月前
|
存储 监控 分布式数据库
百亿级存储架构: ElasticSearch+HBase 海量存储架构与实现
本文介绍了百亿级数据存储架构的设计与实现,重点探讨了ElasticSearch和HBase的结合使用。通过ElasticSearch实现快速检索,HBase实现海量数据存储,解决了大规模数据的高效存储与查询问题。文章详细讲解了数据统一接入、元数据管理、数据一致性及平台监控等关键模块的设计思路和技术细节,帮助读者理解和掌握构建高性能数据存储系统的方法。
百亿级存储架构: ElasticSearch+HBase 海量存储架构与实现
|
3月前
|
存储 前端开发 API
DDD领域驱动设计实战-分层架构
DDD分层架构通过明确各层职责及交互规则,有效降低了层间依赖。其基本原则是每层仅与下方层耦合,分为严格和松散两种形式。架构演进包括传统四层架构与改良版四层架构,后者采用依赖反转设计原则优化基础设施层位置。各层职责分明:用户接口层处理显示与请求;应用层负责服务编排与组合;领域层实现业务逻辑;基础层提供技术基础服务。通过合理设计聚合与依赖关系,DDD支持微服务架构灵活演进,提升系统适应性和可维护性。

热门文章

最新文章