使用 Kafka + Spark Streaming + Cassandra 构建数据实时处理引擎-阿里云开发者社区

开发者社区> 明惠> 正文

使用 Kafka + Spark Streaming + Cassandra 构建数据实时处理引擎

简介: Apache Kafka 是一个可扩展,高性能,低延迟的平台,允许我们像消息系统一样读取和写入数据。我们可以很容易地在 Java 中使用 Kafka。 Spark Streaming 是 Apache Spark 的一部分,是一个可扩展、高吞吐、容错的实时流处理引擎。
+关注继续查看

Apache Kafka 是一个可扩展,高性能,低延迟的平台,允许我们像消息系统一样读取和写入数据。我们可以很容易地在 Java 中使用 Kafka。

Spark Streaming 是 Apache Spark 的一部分,是一个可扩展、高吞吐、容错的实时流处理引擎。虽然是使用 Scala 开发的,但是支持 Java API。

Apache Cassandra 是分布式的 NoSQL 数据库。
在这篇文章中,我们将介绍如何通过这三个组件构建一个高扩展、容错的实时数据处理平台。

准备

在进行下面文章介绍之前,我们需要先创建好 Kafka 的主题以及 Cassandra 的相关表,具体如下:

在 Kafka 中创建名为 messages 的主题

$KAFKA_HOME$\bin\windows\kafka-topics.bat --create \
 --zookeeper localhost:2181 \
 --replication-factor 1 --partitions 1 \
 --topic messages

在 Cassandra 中创建 KeySpace 和 table

CREATE KEYSPACE vocabulary
    WITH REPLICATION = {
        'class' : 'SimpleStrategy',
        'replication_factor' : 1
    };
USE vocabulary;
CREATE TABLE words (word text PRIMARY KEY, count int);

上面我们创建了名为 vocabulary 的 KeySpace,以及名为 words 的表。

添加依赖

我们使用 Maven 进行依赖管理,这个项目使用到的依赖如下:

<dependency>
    <groupId>org.apache.spark</groupId>
    <artifactId>spark-core_2.11</artifactId>
    <version>2.3.0</version>
    <scope>provided</scope>
</dependency>
<dependency>
    <groupId>org.apache.spark</groupId>
    <artifactId>spark-sql_2.11</artifactId>
    <version>2.3.0</version>
    <scope>provided</scope>
</dependency>
<dependency>
    <groupId>org.apache.spark</groupId>
    <artifactId>spark-streaming_2.11</artifactId>
    <version>2.3.0</version>
    <scope>provided</scope>
</dependency>
<dependency>
    <groupId>org.apache.spark</groupId>
    <artifactId>spark-streaming-kafka-0-10_2.11</artifactId>
    <version>2.3.0</version>
</dependency>
<dependency>
    <groupId>com.datastax.spark</groupId>
    <artifactId>spark-cassandra-connector_2.11</artifactId>
    <version>2.3.0</version>
</dependency>
<dependency>
    <groupId>com.datastax.spark</groupId>
    <artifactId>spark-cassandra-connector-java_2.11</artifactId>
    <version>1.5.2</version>
</dependency>

数据管道开发

我们将使用 Spark 在 Java 中创建一个简单的应用程序,它将与我们之前创建的Kafka主题集成。应用程序将读取已发布的消息并计算每条消息中的单词频率。 然后将结果更新到 Cassandra 表中。整个数据架构如下:

现在我们来详细介绍代码是如何实现的。

获取 JavaStreamingContext

Spark Streaming 中的切入点是 JavaStreamingContext,所以我们首先需要获取这个对象,如下:

SparkConf sparkConf = new SparkConf();
sparkConf.setAppName("WordCountingApp");
sparkConf.set("spark.cassandra.connection.host", "127.0.0.1");
 
JavaStreamingContext streamingContext = new JavaStreamingContext(
  sparkConf, Durations.seconds(1));

从 Kafka 中读取数据

有了 JavaStreamingContext 之后,我们就可以从 Kafka 对应主题中读取实时流数据,如下:

Map<String, Object> kafkaParams = new HashMap<>();
kafkaParams.put("bootstrap.servers", "localhost:9092");
kafkaParams.put("key.deserializer", StringDeserializer.class);
kafkaParams.put("value.deserializer", StringDeserializer.class);
kafkaParams.put("group.id", "use_a_separate_group_id_for_each_stream");
kafkaParams.put("auto.offset.reset", "latest");
kafkaParams.put("enable.auto.commit", false);
Collection<String> topics = Arrays.asList("messages");
 
JavaInputDStream<ConsumerRecord<String, String>> messages = 
  KafkaUtils.createDirectStream(
    streamingContext, 
    LocationStrategies.PreferConsistent(), 
    ConsumerStrategies.<String, String> Subscribe(topics, kafkaParams));

我们在程序中提供了 key 和 value 的 deserializer。这个是 Kafka 内置提供的。我们也可以根据自己的需求自定义 deserializer。

处理 DStream

我们在前面只是定义了从 Kafka 中哪张表中获取数据,这里我们将介绍如何处理这些获取的数据:

JavaPairDStream<String, String> results = messages
  .mapToPair( 
      record -> new Tuple2<>(record.key(), record.value())
  );
JavaDStream<String> lines = results
  .map(
      tuple2 -> tuple2._2()
  );
JavaDStream<String> words = lines
  .flatMap(
      x -> Arrays.asList(x.split("\\s+")).iterator()
  );
JavaPairDStream<String, Integer> wordCounts = words
  .mapToPair(
      s -> new Tuple2<>(s, 1)
  ).reduceByKey(
      (i1, i2) -> i1 + i2
    );

将数据发送到 Cassandra 中

最后我们需要将结果发送到 Cassandra 中,代码也很简单。

wordCounts.foreachRDD(
    javaRdd -> {
      Map<String, Integer> wordCountMap = javaRdd.collectAsMap();
      for (String key : wordCountMap.keySet()) {
        List<Word> wordList = Arrays.asList(new Word(key, wordCountMap.get(key)));
        JavaRDD<Word> rdd = streamingContext.sparkContext().parallelize(wordList);
        javaFunctions(rdd).writerBuilder(
          "vocabulary", "words", mapToRow(Word.class)).saveToCassandra();
      }
    }
  );

启动应用程序

最后,我们需要将这个 Spark Streaming 程序启动起来,如下:

streamingContext.start();
streamingContext.awaitTermination();

使用 Checkpoints

在实时流处理应用中,将每个批次的状态保存下来通常很有用。比如在前面的例子中,我们只能计算单词的当前频率,如果我们想计算单词的累计频率怎么办呢?这时候我们就可以使用 Checkpoints。新的数据架构如下

为了启用 Checkpoints,我们需要进行一些改变,如下:

streamingContext.checkpoint("./.checkpoint");

这里我们将 checkpoint 的数据写入到名为 .checkpoint 的本地目录中。但是在现实项目中,最好使用 HDFS 目录。

现在我们可以通过下面的代码计算单词的累计频率:

JavaMapWithStateDStream<String, Integer, Integer, Tuple2<String, Integer>> cumulativeWordCounts = wordCounts
  .mapWithState(
    StateSpec.function( 
        (word, one, state) -> {
          int sum = one.orElse(0) + (state.exists() ? state.get() : 0);
          Tuple2<String, Integer> output = new Tuple2<>(word, sum);
          state.update(sum);
          return output;
        }
      )
    );

部署应用程序

最后,我们可以使用 spark-submit 来部署我们的应用程序,具体如下:

$SPARK_HOME$\bin\spark-submit \
  --class com.baeldung.data.pipeline.WordCountingAppWithCheckpoint \
  --master local[2] 
  \target\spark-streaming-app-0.0.1-SNAPSHOT-jar-with-dependencies.jar

最后,我们可以在 Cassandra 中查看到对应的表中有数据生成了。完整的代码可以参见 https://github.com/eugenp/tutorials/tree/master/apache-spark

##微信公众号和钉钉群交流
为了营造一个开放的 Cassandra 技术交流,我们建立了微信公众号和钉钉群,为广大用户提供专业的技术分享及问答,定期在国内开展线下技术沙龙,专家技术直播,欢迎大家加入。

微信公众号:

Cassandra技术社区

钉钉群

lALPDgQ9ql0mM3XMp8yo_168_167_png_620x10000q90g

钉钉群入群链接:https://c.tb.cn/F3.ZRTY0o

版权声明:本文内容由阿里云实名注册用户自发贡献,版权归原作者所有,阿里云开发者社区不拥有其著作权,亦不承担相应法律责任。具体规则请查看《阿里云开发者社区用户服务协议》和《阿里云开发者社区知识产权保护指引》。如果您发现本社区中有涉嫌抄袭的内容,填写侵权投诉表单进行举报,一经查实,本社区将立刻删除涉嫌侵权内容。

相关文章
【译】Databricks使用Spark Streaming和Delta Lake对流式数据进行数据质量监控介绍
本文主要对Databricks如何使用Spark Streaming和Delta Lake对流式数据进行数据质量监控的方法和架构进行了介绍,本文探讨了一种数据管理架构,该架构可以在数据到达时,通过主动监控和分析来检测流式数据中损坏或不良的数据,并且不会造成瓶颈。
1187 0
基于 RocketMQ 构建阿里云事件驱动引擎——EventBridge
以Kubernetes为基础设施的云原生技术,彻底改变了我们的开发和思维模式。事件作为云原生领域的一等公民,已经无处不在,是云原生架构体系松耦合、灵活性的基础。 作为Gartner定义的10大战略技术趋势之一,事件驱动架构(EDA)逐渐成为主流技术架构。根据Gartner的预估,到2022年,在新型数字化商业的解决方案中,将有6成使用EDA,在商业组织参与的技术栈中,EDA有一半的占比。 本文
167 0
使用Spark Streaming SQL进行PV/UV统计
PV/UV统计是流式分析一个常见的场景。通过PV可以对访问的网站做流量或热点分析,例如广告主可以通过PV值预估投放广告网页所带来的流量以及广告收入。另外一些场景需要对访问的用户作分析,比如分析用户的网页点击行为,此时就需要对UV做统计。
6338 0
基于 MaxCompute 的实时数据处理实践
MaxCompute 通过流式数据高性能写入和秒级别查询能力(查询加速),提供EB级云原生数仓近实时分析能力;高效的实现对变化中的数据进行快速分析及决策辅助。当前Demo基于近实时交互式BI分析/决策辅助场景,实现指标卡近实时BI分析、近实时市场监测、近实时趋势分析、近实时销量拆分功能。
536 0
AngularJS最佳实践: 请小心使用 ng-repeat 中的 $index
“有客户投诉,说在删除指定的某条记录时,结果删掉的却是另外一条记录!” 看起来是个很严重的BUG。 有一次我们在工作中碰到了这个问题。 要定位这个BUG非常麻烦, 因为客户也不清楚如何重现这个问题。
953 0
【最佳实践】使用 Elasticsearch SQL 实现数据查询
如何使用 Elasticsearch SQL 来对我们的数据进行查询。
2343 0
使用DTS从RDS PG实时同步数据到AnalyticDB for PostgreSQL
DTS支持从RDS PG将数据实时同步到AnalyticDB for PG,用户可以很方便的搭建起RDS PG到AnalyticDB for PG的数据同步,轻松实现数据的流转和复杂查询的优化。 使用DTS的前提条件 要求同步的数据表,必须建有主键(通过主键来保证源端和目标端表记录一致性)。
2236 0
《构建实时机器学习系统》一1.6 实时应用对机器学习的要求
本节书摘来自华章出版社《构建实时机器学习系统》一 书中的第1章,第1.6节,作者:彭河森 汪涵,更多章节内容可以访问云栖社区“华章计算机”公众号查看。
964 0
+关注
明惠
关注HBase和Spark
18
文章
7
问答
来源圈子
更多
文章排行榜
最热
最新
相关电子书
更多
《2021云上架构与运维峰会演讲合集》
立即下载
《零基础CSS入门教程》
立即下载
《零基础HTML入门教程》
立即下载