像Google一样构建机器学习系统3 - 利用MPIJob运行ResNet101

本文涉及的产品
容器镜像服务 ACR,镜像仓库100个 不限时长
容器服务 Serverless 版 ACK Serverless,952元额度 多规格
容器服务 Serverless 版 ACK Serverless,317元额度 多规格
简介: 从上篇文章中,我们可以看到如何通过Kubeflow Pipeline运行单节点任务机器学习工作流,在本文中,我们会介绍如何使用Pipeline运行分布式MPI任务,该MPI任务运行模型ResNet101的测试。

本系列将利用阿里云容器服务,帮助您上手Kubeflow Pipelines.

上篇文章中,我们可以看到如何通过Kubeflow Pipeline运行单节点任务机器学习工作流,在本文中,我们会介绍如何使用Pipeline运行分布式MPI任务,该MPI任务运行模型ResNet101的测试。

开发MPIRun Pipeline

由于Kubeflow Pipelines提供的例子多数都是单机任务,那么如何利用Pipelines运行分布式训练?阿里云容器服务团队提供了利用MPIJob训练ResNet101模型的例子,方便您在阿里云上使用和学习Kubeflow Pipelines,并且训练支持分布式的allreduce模型训练。

在Kubeflow Pipelines中可以用Python代码描述了这样一个流程, 完整代码可以查看mpi_run.py。我们在这个例子中使用了arena_op这是对于Kubeflow默认的container_op封装,能够实现对于分布式训练MPI和PS模式的无缝衔接,另外也支持使用GPU和RDMA等异构设备和分布式存储的无缝接入,同时也方便从git源同步代码。是一个比较实用的工具API。而arena_op是基于开源项目Arena

  env = ['NCCL_DEBUG=INFO','GIT_SYNC_BRANCH={0}'.format(git_sync_branch)]

  train=arena.mpi_job_op(
    name="all-reduce",
    image=image,
    env=env,
    data=[data],
    workers=workers,
    sync_source=sync_source,
    gpus=gpus,
    cpu_limit=cpu_limit,
    memory_limit=memory_limit,
    metrics=[metric],
    command="""
    mpirun python code/benchmarks/scripts/tf_cnn_benchmarks/tf_cnn_benchmarks.py --model resnet101 \
    --batch_size {0}  --variable_update horovod --optimizer {1}\
    --summary_verbosity=3 --save_summaries_steps=10
    """.format(batch_size, optimizer)
  )

arena.mpi_job_op函数的参数如下:

name,image, data和command之外,在模型训练步骤中,还需要指定:

  • name: 步骤名称
  • image: 需要使用的容器镜像
  • workers: 参与运算的worker数量
  • data: 要使用的数据以及其对应到容器内部的挂载目录, 这里的data是一个数组类型, 可以设置为data=["user-susan:/training"],表示可以挂载到多个数据。
  • env: 系统环境变量,这里的env也是数组类型,可以支持多个env; 如果不需要指定环境变量可以把env设置为[]
  • gpu: 默认为0,就是不使用GPU;如果为大于0的整数值,就代表该步骤需要这个数量的GPU数。
  • cpu_limit: cpu的资源上限
  • memory_limit: 内存的资源上限
  • metrics: 同样是从可重现和可比较的实验目的出发,用户可以将需要的一系列指标导出,并且通过Pipelines UI上直观的显示和比较。具体使用方法分为两步,1.在调用API时以数组的形式指定要收集指标的metrics name和指标的展示格式PERCENTAGE或者是RAW,比如metrics=["Train-accuracy:PERCENTAGE"]。2.由于Pipelines默认会从stdout日志中收集指标,你需要在真正运行的模型代码中输出{metrics name}={value}或者{metrics name}:{value}, 可以参考具体样例代码
  • command: 就是要提交的mpirun命令

arena中mpi_run方法的调用, 还比较直观,下面就可以定义一个Python方法。

@dsl.pipeline(
  name='pipeline to run mpi job',
  description='shows how to run mpi job.'
)
def mpirun_pipeline(image="uber/horovod:0.13.11-tf1.10.0-torch0.4.0-py3.5",
               batch_size="64",
               optimizer='momentum',
               sync_source='https://github.com/tensorflow/benchmarks.git',
               git_sync_branch='cnn_tf_v1.9_compatible',
               data='user-susan:/training',
               gpus=1,
               workers=1,
               cpu_limit='2',
               metric='images/sec',
               memory_limit='10Gi'):

@dsl.pipeline是表示工作流的装饰器,这个装饰器中需要定义两个属性,分别是namedescription

入口方法mpirun_pipeline中定义了一系列参数,由于数量较多就不在这里一一列举了。这里的参数的值实际上是 dsl.PipelineParam类型,定义成dsl.PipelineParam的目的在于可以通过Kubeflow Pipelines的原生UI可以将其转换成输入表单,表单的关键字是参数名称,而默认值为参数的值. 值得注意的是,这里的dsl.PipelineParam对应值的实际上只能是字符串和数字型;而数组和map,以及自定义类型都是无法通过转型进行变换的。

而实际上,这些参数都可以在用户提交工作流时进行覆盖,以下就是提交工作流对应的UI:

5_input

提交Pipeline

整个过程包括:

1.将Python代码编译成Pipelines执行引擎(Argo)识别的DAG文件的压缩包

准备一个python3的环境,并且安装Kubeflow Pipelines SDK

# docker run -itd --name py3 python:3  sleep infinity
# docker exec -it py3 bash

在Python3的环境下执行如下命令

# pip3 install http://kubeflow.oss-cn-beijing.aliyuncs.com/kfp/0.1.16/kfp.tar.gz --upgrade
# pip3 install http://kubeflow.oss-cn-beijing.aliyuncs.com/kfp-arena/kfp-arena-0.6.tar.gz --upgrade

# curl -O https://raw.githubusercontent.com/cheyang/pipelines/add_mpijob/samples/arena-samples/mpi/mpi_run.py
# dsl-compile --py mpi_run.py --output mpi_run.py.tar.gz

# ls -ltr | grep mpi_run
mpi_run.py.tar.gz

# exit

将该文件从容器中拷贝出来

# docker cp py3:/mpi_run.py.tar.gz .

2.将该压缩包上传到Kubeflow Pipeline的web控制台,并且将名字改为mpi_run

5_upload_pipeline

运行试验

1.在pipeline页面,点击mpi_run链接

2.点击右上角按钮Create run

3.在Start a new run的界面上填写Run name,同时选择已有或者创建相关的实验。同时按照实际情况设置运行参数,也就是Run parameters。注意,如果您没有配置数据相关的配置,请将data中的参数清空即可。点击启动即可。

5_param

查看运行结果

登录到Kubeflow Pipelines的UI: [https://{pipeline地址}/pipeline/#/experiments],查看实验结果:

5_param

点击具体Run,选择all-reduce, 并点击logs查看日志

5_logs

总结

本文介绍了如何利用Pipeline运行MPIJob,实际上这个例子并不一定严丝合缝的满足使用者的需求:

  1. arena.mpi_job_op是使用MPIJob的API,您可以根据需要自定义调用方式。
  2. def mpirun_pipeline的灵活性更是掌握在用户的手里,如何定义具体Pipeline的输入参数,也是有足够的灵活性。
相关实践学习
部署Stable Diffusion玩转AI绘画(GPU云服务器)
本实验通过在ECS上从零开始部署Stable Diffusion来进行AI绘画创作,开启AIGC盲盒。
目录
相关文章
|
19天前
|
机器学习/深度学习 人工智能 算法
鸟类识别系统Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+ResNet50算法模型+图像识别
鸟类识别系统。本系统采用Python作为主要开发语言,通过使用加利福利亚大学开源的200种鸟类图像作为数据集。使用TensorFlow搭建ResNet50卷积神经网络算法模型,然后进行模型的迭代训练,得到一个识别精度较高的模型,然后在保存为本地的H5格式文件。在使用Django开发Web网页端操作界面,实现用户上传一张鸟类图像,识别其名称。
64 12
鸟类识别系统Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+ResNet50算法模型+图像识别
|
1月前
|
SQL 监控 大数据
通过Google Dataflow,我们能够构建一个高效、可扩展且易于维护的实时数据处理系统
【9月更文挑战第7天】随着大数据时代的到来,企业对高效数据处理的需求日益增加,特别是在实时分析和事件驱动应用中。Google Dataflow作为Google Cloud Platform的一项服务,凭借其灵活、可扩展的特点,成为实时大数据处理的首选。本文将介绍Dataflow的基本概念、优势,并通过一个电商日志分析的实际案例和示例代码,展示如何构建高效的数据处理管道。Dataflow不仅支持自动扩展和高可用性,还提供了多种编程语言支持和与GCP其他服务的紧密集成,简化了整个数据处理流程。通过Dataflow,企业可以快速响应业务需求,优化用户体验。
36 3
|
2月前
|
机器学习/深度学习 PHP 开发者
探索PHP中的面向对象编程构建你的首个机器学习模型:以Python和scikit-learn为例
【8月更文挑战第30天】在PHP的世界中,面向对象编程(OOP)是一块基石,它让代码更加模块化、易于管理和维护。本文将深入探讨PHP中面向对象的魔法,从类和对象的定义开始,到继承、多态性、封装等核心概念,再到实战中如何应用这些理念来构建更健壮的应用。我们将通过示例代码,一起见证PHP中OOP的魔力,并理解其背后的设计哲学。
|
2月前
|
机器学习/深度学习 人工智能 Android开发
揭秘AI编程:从零开始构建你的第一个机器学习模型移动应用开发之旅:从新手到专家
【8月更文挑战第29天】本文将带你走进人工智能的奇妙世界,一起探索如何从零开始构建一个机器学习模型。我们将一步步解析整个过程,包括数据收集、预处理、模型选择、训练和测试等步骤,让你对AI编程有一个全面而深入的理解。无论你是AI初学者,还是有一定基础的开发者,都能在这篇文章中找到你需要的信息和启示。让我们一起开启这段激动人心的AI编程之旅吧! 【8月更文挑战第29天】在这篇文章中,我们将探索移动应用开发的奇妙世界。无论你是刚刚踏入这个领域的新手,还是已经有一定经验的开发者,这篇文章都将为你提供有价值的信息和指导。我们将从基础开始,逐步深入到更复杂的主题,包括移动操作系统的选择、开发工具的使用、
|
2月前
|
机器学习/深度学习 人工智能 算法
【悬念揭秘】ML.NET:那片未被探索的机器学习宝藏,如何让普通开发者一夜变身AI高手?——从零开始,揭秘构建智能应用的神秘旅程!
【8月更文挑战第28天】ML.NET 是微软推出的一款开源机器学习框架,专为希望在本地应用中嵌入智能功能的 .NET 开发者设计。无需深厚的数据科学背景,即可实现预测分析、推荐系统和图像识别等功能。它支持多种数据源,提供丰富的预处理工具和多样化的机器学习算法,简化了数据处理和模型训练流程。
39 1
|
2月前
|
机器学习/深度学习 数据处理 定位技术
构建您的首个机器学习项目:从理论到实践
【8月更文挑战第28天】本文旨在为初学者提供一个简明的指南,通过介绍一个基础的机器学习项目——预测房价——来揭示机器学习的神秘面纱。我们将从数据收集开始,逐步深入到数据处理、模型选择、训练和评估等环节。通过实际操作,你将学会如何利用Python及其强大的科学计算库来实现自己的机器学习模型。无论你是编程新手还是有一定经验的开发者,这篇文章都将为你打开一扇通往机器学习世界的大门。
|
2月前
|
机器学习/深度学习 自动驾驶 算法
揭秘机器学习:用Python构建你的首个预测模型
【8月更文挑战第26天】 机器学习,这个听起来既神秘又遥不可及的领域,实际上正悄然改变着我们的世界。从推荐系统到自动驾驶汽车,机器学习技术无处不在。本文将带你走进机器学习的世界,通过一个简单的Python代码示例,展示如何构建一个基本的线性回归模型来预测房价。不需要复杂的数学公式或深奥的理论,我们将以最直观的方式理解机器学习的核心概念。无论你是编程新手还是数据科学爱好者,这篇文章都将为你打开一扇新的大门,让你看到数据背后的力量。
|
2月前
|
机器学习/深度学习 人工智能 算法
如何使用Scikit-learn在Python中构建一个机器学习分类器
如何使用Scikit-learn在Python中构建一个机器学习分类器
24 3
|
2月前
|
机器学习/深度学习 数据采集 分布式计算
构建一个高效的机器学习工作流:技术实践与优化策略
【8月更文挑战第12天】构建一个高效的机器学习工作流是一个复杂而持续的过程,需要综合考虑数据、模型、算法、平台等多个方面。通过遵循上述步骤和优化策略,可以显著提高机器学习项目的开发效率和质量,为业务带来更大的价值。未来,随着技术的不断进步和应用场景的不断拓展,我们有理由相信机器学习工作流将变得更加高效、智能和灵活。
|
3月前
|
机器学习/深度学习 算法
现代深度学习框架构建问题之tinyDL中机器学习的通用组件与深度学习如何解决
现代深度学习框架构建问题之tinyDL中机器学习的通用组件与深度学习如何解决
32 2