携程基于Flink的实时特征平台

本文涉及的产品
实时计算 Flink 版,5000CU*H 3个月
简介: 本文来自7月26日在上海举行的 Flink Meetup 会议,分享来自于刘康,目前在大数据平台部从事模型生命周期相关平台开发,现在主要负责基于flink开发实时模型特征计算平台。熟悉分布式计算,在模型部署及运维方面有丰富实战经验和深入的理解,对模型的算法及训练有一定的了解。

作者:刘康

本文来自7月26日在上海举行的 Flink Meetup 会议,分享来自于刘康,目前在大数据平台部从事模型生命周期相关平台开发,现在主要负责基于flink开发实时模型特征计算平台。熟悉分布式计算,在模型部署及运维方面有丰富实战经验和深入的理解,对模型的算法及训练有一定的了解。

本文主要内容如下:

  • 在公司实时特征开发的现状基础上,说明实时特征平台的开发背景、目标以及现状

  • 选择Flink作为平台计算引擎的原因

  • Flink的实践:有代表性的使用示例、为兼容Aerospike(平台的存储介质)的开发以及碰到的坑

  • 当前效果&未来规划

一、在公司实时特征开发的现状基础上,说明实时特征平台的开发背景、目标以及现状

1、原实时特征作业的开发运维;

1.1、选择实时计算平台:依据项目的性能指标要求(latency,throughput等),在已有的实时计算平台:Storm Spark flink进行选择

1.2主要的开发运维过程:

  • 80%以上的作业需要用到消息队列数据源,但是消息队列为非结构化数据且没有统一的数据字典。所以需要通过消费对应的topic,解析消息并确定所需的内容

  • 基于需求中的场景,设计开发计算逻辑

  • 在实时数据不能完全满足数据需求的情况,另外开发单独的离线作业以及融合逻辑;

    例如:在需要30天数据的场景下,但消息队列中只有七天内的数据时(kafka中消息的默认保留时间),剩下23天就需要用离线数据来补充。

  • 设计开发数据的校验和纠错逻辑

    消息的传输需要依赖网络,消息丢失和超时难以完全避免,所以需要有一个校验和纠错的逻辑。

  • 测试上线

  • 监控和预警

2、原实时特征作业的开发痛点

  • 消息队列数据源结构没有统一的数据字典

  • 特征计算逻辑高度定制化,开发测试周期长

  • 实时数据不能满足需求时,需要定制离线作业和融合逻辑

  • 校验和纠错方案没有形成最佳实践,实际效果比较依赖个人能力

  • 监控和预警方案需要基于业务逻辑定制

3、基于整理的痛点,确定下来的平台目标

  • 实时数据字典:提供统一的数据源注册、管理功能,支持单一结构消息的topic和包含多种不同结构消息的topic

  • 逻辑抽象:抽象为SQL,减少工作量&降低使用门槛

  • 特征融合:提供融合特征的功能,解决实时特征不能完全满足数据需求的情况

  • 数据校验和纠错:提供利用离线数据校验和纠错实时特征的功能

  • 实时计算延迟:ms级

  • 实时计算容错:端到端 exactly-once

  • 统一的监控预警和HA方案

4、特征平台系统架构

现在的架构是标准lamda架构,离线部分由spark sql + dataX组成。现在使用的是KV存储系统Aerospike,跟redis的主要区别是使用SSD作为主存,我们压测下来大部分场景读写性能跟redis在同一个数据量级。

实时部分:使用flink作为计算引擎,介绍一下用户的使用方式:

  • 注册数据源:目前支持的实时数据源主要是Kafka和Aerospike,其中Aerospike中的数据如果是在平台上配置的离线或者实时特征,会进行自动注册。Kafka数据源需要上传对应的schemaSample文件

  • 计算逻辑:通过SQL表达

  • 定义输出:定义输出的Aerospike表和可能需要的Kafka Topic,用于推送Update或者Insert的数据的key

用户完成上面的操作后,平台将所有信息写入到json配置文件。下一步平台将配置文件和之前准备好的flinkTemplate.jar(包含所有平台所需的flink功能)提交给yarn,启动flink job。

5、平台功能展示

1)平台功能展示-数据源注册

2)实时特征编辑-基本信息

3)实时特征编辑-数据源选择

4)实时特征编辑-SQL计算

5)实时特征编辑-选择输出

二、选择Flink的原因

我们下面一个我们说一下我们选择flink来做这个特征平台的原因。

分为三个维度:最高延迟、容错、sql功能成熟度

  • 延迟:storm和flink是纯流式,最低可以达到毫秒级的延迟。spark的纯流式机制是continuous模式,也可以达最低毫秒级的延迟

  • 容错:storm使用异或ack的模式,支持atLeastOnce。消息重复解决不。spark通过checkpoint和WAL来提供exactlyOnce。flink通过checkpoint和SavePoint来做到exactlyOnce。

  • sql成熟度:storm现在的版本中SQL还在一个实验阶段,不支持聚合和join。spark现在可以提供绝大部分功能,不支持distinct、limit和聚合结果的order by。flink现在社区版中提供的sql,不支持distinct aggregate

三、Flink 实践

1、实⽤示例

2、兼容开发:flink现在没有对Aerospike提供读写支持,所以需要二次开发

3、碰到的坑

四、平台当前效果&未来规划

当前效果:将实时特征上线周期从原平均3天-5天降至小时级。未来规划:

  • 完善特征平台的功能:融合特征等

  • 简化步骤,提高用户体验

  • 根据需求,进一步完善SQL的功能例如支持win的开始时间offset,可以通过countTrigger的win等

下一步的规划是通过sql或者DSL来描述模型部署和模型训练

更多资讯请访问 Apache Flink 中文社区网站

相关实践学习
基于Hologres轻松玩转一站式实时仓库
本场景介绍如何利用阿里云MaxCompute、实时计算Flink和交互式分析服务Hologres开发离线、实时数据融合分析的数据大屏应用。
Linux入门到精通
本套课程是从入门开始的Linux学习课程,适合初学者阅读。由浅入深案例丰富,通俗易懂。主要涉及基础的系统操作以及工作中常用的各种服务软件的应用、部署和优化。即使是零基础的学员,只要能够坚持把所有章节都学完,也一定会受益匪浅。
目录
相关文章
|
3月前
|
存储 SQL 安全
联通实时计算平台问题之如何体现集群治理的效果
联通实时计算平台问题之如何体现集群治理的效果
|
3月前
|
消息中间件 分布式计算 Kafka
联通实时计算平台问题之实时计算平台对于用户订阅和数据下发是如何支持的
联通实时计算平台问题之实时计算平台对于用户订阅和数据下发是如何支持的
|
3月前
|
消息中间件 监控 Java
联通实时计算平台问题之监控Kafka集群的断传和积压情况要如何操作
联通实时计算平台问题之监控Kafka集群的断传和积压情况要如何操作
|
3月前
|
消息中间件 监控 Kafka
联通实时计算平台问题之Flink状态后端数据量较大时,问题排查要如何进行
联通实时计算平台问题之Flink状态后端数据量较大时,问题排查要如何进行
|
3月前
|
消息中间件 存储 算法
联通实时计算平台问题之亿级标签关联实现且不依赖外部系统要如何操作
联通实时计算平台问题之亿级标签关联实现且不依赖外部系统要如何操作
|
3月前
|
消息中间件 监控 Kafka
联通实时计算平台问题之实时计算平台的数据处理流程是什么样的
联通实时计算平台问题之实时计算平台的数据处理流程是什么样的
|
3月前
|
搜索推荐 OLAP 流计算
OneSQL OLAP实践问题之基于 Flink 打造流批一体的数据计算平台如何解决
OneSQL OLAP实践问题之基于 Flink 打造流批一体的数据计算平台如何解决
56 1
|
3月前
|
监控 Java Serverless
美团 Flink 大作业部署问题之想在Serverless平台上实时查看Spring Boot应用的日志要怎么操作
美团 Flink 大作业部署问题之想在Serverless平台上实时查看Spring Boot应用的日志要怎么操作
|
5月前
|
机器学习/深度学习 人工智能 Apache
人工智能平台PAI操作报错合集之alink任务可以在本地运行,上传到flink web运行就报错,如何解决
阿里云人工智能平台PAI (Platform for Artificial Intelligence) 是阿里云推出的一套全面、易用的机器学习和深度学习平台,旨在帮助企业、开发者和数据科学家快速构建、训练、部署和管理人工智能模型。在使用阿里云人工智能平台PAI进行操作时,可能会遇到各种类型的错误。以下列举了一些常见的报错情况及其可能的原因和解决方法。
|
6月前
|
SQL 关系型数据库 Java
实时计算 Flink版操作报错之在阿里云DataHub平台上执行SQL查询GitHub新增star仓库Top 3时不显示结果,是什么原因
在使用实时计算Flink版过程中,可能会遇到各种错误,了解这些错误的原因及解决方法对于高效排错至关重要。针对具体问题,查看Flink的日志是关键,它们通常会提供更详细的错误信息和堆栈跟踪,有助于定位问题。此外,Flink社区文档和官方论坛也是寻求帮助的好去处。以下是一些常见的操作报错及其可能的原因与解决策略。

热门文章

最新文章

下一篇
无影云桌面