Flink Window 排序

本文涉及的产品
实时计算 Flink 版,5000CU*H 3个月
简介: ## 概述 - 对增量Window进行输出排序 - WordCount增量(按单词名称排序) - WordCount增量(按单词个数,再单词名称排序)

Flink Window 排序

概述

  • 对增量Window进行输出排序
  • WordCount增量(按单词名称排序)
  • WordCount增量(按单词个数,再单词名称排序)

源码

源码分析

WordCount 程序(增量按单词升序排序)

  • DataStream.windowAll 说明是window中的所有Key返回AllWindowedStream
  • AllWindowedStream.process(ProcessAllWindowFunction),ProcessAllWindowFunction数定义整个Window的所有数据传过来,进行处理
    可以进行按key合并,按单词排序,按单词个数排序
  • BucketingSink指定文件输出目录

package com.opensourceteams.module.bigdata.flink.example.stream.worldcount.nc

import java.time.ZoneId

import org.apache.flink.configuration.Configuration
import org.apache.flink.streaming.api.scala.StreamExecutionEnvironment
import org.apache.flink.streaming.api.scala.function.ProcessAllWindowFunction
import org.apache.flink.streaming.api.windowing.assigners.TumblingProcessingTimeWindows
import org.apache.flink.streaming.api.windowing.time.Time
import org.apache.flink.streaming.api.windowing.windows.TimeWindow
import org.apache.flink.streaming.connectors.fs.bucketing.{BucketingSink, DateTimeBucketer}
import org.apache.flink.util.Collector

import scala.collection.mutable

/**
  * nc -lk 1234  输入数据
  */
object SocketWindowWordCountLocalSinkHDFSAndWindowAllAndSorted {


  def getConfiguration(isDebug:Boolean = false):Configuration={

    val configuration : Configuration = new Configuration()

    if(isDebug){
      val timeout = "100000 s"
      val timeoutHeartbeatPause = "1000000 s"
      configuration.setString("akka.ask.timeout",timeout)
      configuration.setString("akka.lookup.timeout",timeout)
      configuration.setString("akka.tcp.timeout",timeout)
      configuration.setString("akka.transport.heartbeat.interval",timeout)
      configuration.setString("akka.transport.heartbeat.pause",timeoutHeartbeatPause)
      configuration.setString("akka.watch.heartbeat.pause",timeout)
      configuration.setInteger("heartbeat.interval",10000000)
      configuration.setInteger("heartbeat.timeout",50000000)
    }


    configuration
  }

  def main(args: Array[String]): Unit = {


    val port = 1234
    // get the execution environment
   // val env: StreamExecutionEnvironment = StreamExecutionEnvironment.getExecutionEnvironment


    val configuration : Configuration = getConfiguration(true)

    val env:StreamExecutionEnvironment = StreamExecutionEnvironment.createLocalEnvironment(1,configuration)






    // get input data by connecting to the socket
    val dataStream = env.socketTextStream("localhost", port, '\n')



    import org.apache.flink.streaming.api.scala._
    val dataStreamDeal = dataStream.flatMap( w => w.split("\\s") ).map( w => WordWithCount(w,1))
      .keyBy("word")
      //将当前window中所有的行记录,发送过来ProcessAllWindowFunction函数中去处理(可以排序,可以对相同key进行处理)
      //缺点,window中数据量大时,就容易内存溢出
      .windowAll(TumblingProcessingTimeWindows.of(Time.seconds(5)))

      .process(new ProcessAllWindowFunction[WordWithCount,WordWithCount,TimeWindow] {
        override def process(context: Context, elements: Iterable[WordWithCount], out: Collector[WordWithCount]): Unit = {
          val set = new mutable.HashSet[WordWithCount]{}


          for(wordCount <- elements){
            if(set.contains(wordCount)){
              set.remove(wordCount)
              set.add(new WordWithCount(wordCount.word,wordCount.count + 1))
            }else{
              set.add(wordCount)
            }
          }

          val sortSet = set.toList.sortWith( (a,b) => a.word.compareTo(b.word)  < 0 )

          for(wordCount <- sortSet)  out.collect(wordCount)
        }

      })




      //.countWindow(3)
      //.countWindow(3,1)
      //.countWindowAll(3)




    //textResult.print().setParallelism(1)

    val bucketingSink = new BucketingSink[WordWithCount]("file:/opt/n_001_workspaces/bigdata/flink/flink-maven-scala-2/sink-data")


    bucketingSink.setBucketer(new DateTimeBucketer[WordWithCount]("yyyy-MM-dd--HHmm", ZoneId.of("Asia/Shanghai")))
    //bucketingSink.setWriter(new SequenceFileWriter[IntWritable, Text]())
    //bucketingSink.setWriter(new SequenceFileWriter[WordWithCount]())
    //bucketingSink.setBatchSize(1024 * 1024 * 400) // this is 400 MB,
    //bucketingSink.setBatchSize(100 ) // this is 400 MB,
    bucketingSink.setBatchSize(1024 * 1024 * 400 ) // this is 400 MB,
    //bucketingSink.setBatchRolloverInterval(20 * 60 * 1000); // this is 20 mins
    bucketingSink.setBatchRolloverInterval( 2 * 1000); // this is 20 mins
    //setInactiveBucketCheckInterval
    //setInactiveBucketThreshold
    //每间隔多久时间,往Sink中写数据,不是每天条数据就写,浪费资源
    bucketingSink.setInactiveBucketCheckInterval(2 * 1000)
    bucketingSink.setInactiveBucketThreshold(2 * 1000)
    bucketingSink.setAsyncTimeout(1 * 1000)


    dataStreamDeal.setParallelism(1)
      .addSink(bucketingSink)




    if(args == null || args.size ==0){
      env.execute("默认作业")

      //执行计划
      //println(env.getExecutionPlan)
      //StreamGraph
     //println(env.getStreamGraph.getStreamingPlanAsJSON)



      //JsonPlanGenerator.generatePlan(jobGraph)

    }else{
      env.execute(args(0))
    }

    println("结束")

  }


  // Data type for words with count
  case class WordWithCount(word: String, count: Long)

/*  abstract private   class OrderWindowFunction extends ProcessWindowFunction<WordWithCount,WordWithCount,WordWithCount,TimeWindow> {

  }*/
}


输入数据

1 2 1 5 3

输出数据

WordWithCount(1,2)
WordWithCount(2,1)
WordWithCount(3,1)
WordWithCount(5,1)

WordCount 程序(增量,按单词个数排序,个数相同,再按单词排序)

  • DataStream.windowAll 说明是window中的所有Key返回AllWindowedStream
  • AllWindowedStream.process(ProcessAllWindowFunction),ProcessAllWindowFunction数定义整个Window的所有数据传过来,进行处理
    可以进行按key合并,按单词排序,按单词个数排序
  • BucketingSink指定文件输出目录
package com.opensourceteams.module.bigdata.flink.example.stream.worldcount.nc.sort

import java.time.ZoneId

import org.apache.flink.configuration.Configuration
import org.apache.flink.streaming.api.scala.StreamExecutionEnvironment
import org.apache.flink.streaming.api.scala.function.ProcessAllWindowFunction
import org.apache.flink.streaming.api.windowing.assigners.TumblingProcessingTimeWindows
import org.apache.flink.streaming.api.windowing.time.Time
import org.apache.flink.streaming.api.windowing.windows.TimeWindow
import org.apache.flink.streaming.connectors.fs.bucketing.{BucketingSink, DateTimeBucketer}
import org.apache.flink.util.Collector

import scala.collection.mutable

/**
  * nc -lk 1234  输入数据
  */
object SocketWindowWordCountLocalSinkHDFSAndWindowAllAndSortedByCount {


  def getConfiguration(isDebug:Boolean = false):Configuration={

    val configuration : Configuration = new Configuration()

    if(isDebug){
      val timeout = "100000 s"
      val timeoutHeartbeatPause = "1000000 s"
      configuration.setString("akka.ask.timeout",timeout)
      configuration.setString("akka.lookup.timeout",timeout)
      configuration.setString("akka.tcp.timeout",timeout)
      configuration.setString("akka.transport.heartbeat.interval",timeout)
      configuration.setString("akka.transport.heartbeat.pause",timeoutHeartbeatPause)
      configuration.setString("akka.watch.heartbeat.pause",timeout)
      configuration.setInteger("heartbeat.interval",10000000)
      configuration.setInteger("heartbeat.timeout",50000000)
    }


    configuration
  }

  def main(args: Array[String]): Unit = {


    val port = 1234
    // get the execution environment
   // val env: StreamExecutionEnvironment = StreamExecutionEnvironment.getExecutionEnvironment


    val configuration : Configuration = getConfiguration(true)

    val env:StreamExecutionEnvironment = StreamExecutionEnvironment.createLocalEnvironment(1,configuration)






    // get input data by connecting to the socket
    val dataStream = env.socketTextStream("localhost", port, '\n')



    import org.apache.flink.streaming.api.scala._
    val dataStreamDeal = dataStream.flatMap( w => w.split("\\s") ).map( w => WordWithCount(w,1))
      .keyBy("word")
      //将当前window中所有的行记录,发送过来ProcessAllWindowFunction函数中去处理(可以排序,可以对相同key进行处理)
      //缺点,window中数据量大时,就容易内存溢出
      .windowAll(TumblingProcessingTimeWindows.of(Time.seconds(5)))

      .process(new ProcessAllWindowFunction[WordWithCount,WordWithCount,TimeWindow] {
        override def process(context: Context, elements: Iterable[WordWithCount], out: Collector[WordWithCount]): Unit = {
          val set = new mutable.HashSet[WordWithCount]{}


          for(wordCount <- elements){
            if(set.contains(wordCount)){
              set.remove(wordCount)
              set.add(new WordWithCount(wordCount.word,wordCount.count + 1))
            }else{
              set.add(wordCount)
            }
          }

          val sortSet = set.toList.sortWith( (a,b) => {


            if(a.count == b.count){
              a.word.compareTo(b.word) < 0
            }else{
              a.count < b.count
            }

          } )

          for(wordCount <- sortSet)  out.collect(wordCount)
        }

      })




      //.countWindow(3)
      //.countWindow(3,1)
      //.countWindowAll(3)




    //textResult.print().setParallelism(1)

    val bucketingSink = new BucketingSink[WordWithCount]("file:/opt/n_001_workspaces/bigdata/flink/flink-maven-scala-2/sink-data")


    bucketingSink.setBucketer(new DateTimeBucketer[WordWithCount]("yyyy-MM-dd--HHmm", ZoneId.of("Asia/Shanghai")))
    //bucketingSink.setWriter(new SequenceFileWriter[IntWritable, Text]())
    //bucketingSink.setWriter(new SequenceFileWriter[WordWithCount]())
    //bucketingSink.setBatchSize(1024 * 1024 * 400) // this is 400 MB,
    //bucketingSink.setBatchSize(100 ) // this is 400 MB,
    bucketingSink.setBatchSize(1024 * 1024 * 400 ) // this is 400 MB,
    //bucketingSink.setBatchRolloverInterval(20 * 60 * 1000); // this is 20 mins
    //bucketingSink.setBatchRolloverInterval( 2 * 1000); // this is 20 mins
    //setInactiveBucketCheckInterval
    //setInactiveBucketThreshold
    //每间隔多久时间,往Sink中写数据,不是每天条数据就写,浪费资源
    bucketingSink.setBatchRolloverInterval(2 * 1000)
    bucketingSink.setInactiveBucketThreshold(2 * 1000)
    //bucketingSink.setAsyncTimeout(1 * 1000)


    dataStreamDeal.setParallelism(1)
      .addSink(bucketingSink)




    if(args == null || args.size ==0){
      env.execute("默认作业")

      //执行计划
      //println(env.getExecutionPlan)
      //StreamGraph
     //println(env.getStreamGraph.getStreamingPlanAsJSON)



      //JsonPlanGenerator.generatePlan(jobGraph)

    }else{
      env.execute(args(0))
    }

    println("结束")

  }


  // Data type for words with count
  case class WordWithCount(word: String, count: Long)

/*  abstract private   class OrderWindowFunction extends ProcessWindowFunction<WordWithCount,WordWithCount,WordWithCount,TimeWindow> {

  }*/
}


输入数据

1 1 2 4 4 3 2 1

输出数据


WordWithCount(3,1)
WordWithCount(2,2)
WordWithCount(4,2)
WordWithCount(1,3)
相关实践学习
基于Hologres轻松玩转一站式实时仓库
本场景介绍如何利用阿里云MaxCompute、实时计算Flink和交互式分析服务Hologres开发离线、实时数据融合分析的数据大屏应用。
Linux入门到精通
本套课程是从入门开始的Linux学习课程,适合初学者阅读。由浅入深案例丰富,通俗易懂。主要涉及基础的系统操作以及工作中常用的各种服务软件的应用、部署和优化。即使是零基础的学员,只要能够坚持把所有章节都学完,也一定会受益匪浅。
相关文章
|
7月前
|
流计算
Flink窗口——window
Flink窗口——window
43 0
|
2月前
|
SQL 消息中间件 分布式计算
大数据-120 - Flink Window 窗口机制-滑动时间窗口、会话窗口-基于时间驱动&基于事件驱动
大数据-120 - Flink Window 窗口机制-滑动时间窗口、会话窗口-基于时间驱动&基于事件驱动
110 0
|
2月前
|
SQL 分布式计算 大数据
大数据-119 - Flink Window总览 窗口机制-滚动时间窗口-基于时间驱动&基于事件驱动
大数据-119 - Flink Window总览 窗口机制-滚动时间窗口-基于时间驱动&基于事件驱动
113 0
|
4月前
|
SQL 存储 Unix
Flink SQL 在快手实践问题之设置 Window Offset 以调整窗口划分如何解决
Flink SQL 在快手实践问题之设置 Window Offset 以调整窗口划分如何解决
72 2
|
2月前
|
分布式计算 Java 大数据
大数据-122 - Flink Time Watermark Java代码测试实现Tumbling Window
大数据-122 - Flink Time Watermark Java代码测试实现Tumbling Window
44 0
|
2月前
|
SQL 消息中间件 分布式计算
大数据-115 - Flink DataStream Transformation 多个函数方法 FlatMap Window Aggregations Reduce
大数据-115 - Flink DataStream Transformation 多个函数方法 FlatMap Window Aggregations Reduce
40 0
|
4月前
|
SQL 安全 流计算
Flink SQL 在快手实践问题之Group Window Aggregate 中的数据倾斜问题如何解决
Flink SQL 在快手实践问题之Group Window Aggregate 中的数据倾斜问题如何解决
94 1
|
4月前
|
SQL 流计算
Flink SQL 在快手实践问题之使用Dynamic Cumulate Window绘制直播间累计UV曲线如何解决
Flink SQL 在快手实践问题之使用Dynamic Cumulate Window绘制直播间累计UV曲线如何解决
77 1
|
4月前
|
SQL 流计算
Flink SQL 在快手实践问题之Window TVF改进窗口聚合功能如何解决
Flink SQL 在快手实践问题之Window TVF改进窗口聚合功能如何解决
36 1
|
4月前
|
数据处理 调度 双11
Flink四大基石——1.window
Flink四大基石——1.window
64 0