[python作业AI毕业设计博客]人工智能医疗新书下载: Machine Learning and AI for Healthcare - 2019.pdf

本文涉及的产品
云原生大数据计算服务MaxCompute,500CU*H 100GB 3个月
云原生大数据计算服务 MaxCompute,5000CU*H 100GB 3个月
简介: 下载地址:https://itbooks.pipipan.com/fs/18113597-335448646 探索人工智能(AI)和医疗机器学习的理论和实际应用。本书提供了机器学习算法,架构设计以及医疗保健和大数据挑战中学习应用的导览。

图片.png

下载地址:https://itbooks.pipipan.com/fs/18113597-335448646

探索人工智能(AI)和医疗机器学习的理论和实际应用。本书提供了机器学习算法,架构设计以及医疗保健和大数据挑战中学习应用的导览。

您将发现医疗保健数据分析的道德含义以及AI在人口和患者健康优化方面的未来。您还将创建机器学习模型,评估绩效并在组织内实施结果。

机器学习和医疗保健人工智能提供了如何在组织内应用机器学习并评估AI应用程序的功效,适用性和效率的技术。通过主要案例研究说明了这些,包括如何通过患者主导的数据学习和物联网重新定义慢性病。

你将学到什么

  • 深入了解关键机器学习算法及其在更广泛的医疗保健中的使用和实施
  • 实施机器学习系统,例如语音识别和增强的深度学习/ AI
  • 选择学习方法/算法和调整以用于医疗保健
  • 通过最佳实践,反馈循环和智能代理,认识并准备医疗保健中的人工智能的未来

本书适用于谁

对机器学习如何用于开发健康情报感兴趣的医疗保健专业人员 - 旨在改善患者健康,人口健康并促进显着的护理费用节省。

第1章:什么是人工智能
章节目标:介绍书籍和主题
页数:10
Sub -Topics
1.什么是人工智能,数据科学,机器和​​深度学习
2.从数据中学习的案例
3.大数据/学习/分析3.0的演变
4.在医疗保健环境中如何使用数据进行学习的实际示例
5.结论

第2章:数据
章节目标:了解学习所需的数据以及如何确保结果准确性的有效数据
页数:30
子主题
1.什么是数据,数据来源以及有哪些类型的数据?很少与大数据以及此类数据集的优缺点。结构化与非结构化数据。
2.数据所需的关键方面,特别是有效性,以确保只有有用和相关的信息
3.如何使用大数据进行学习(用例)
4.将数据转化为信息 - 如何收集可用于改善健康结果的数据以及如何收集此类数据的示例
5.作为大数据使用的一部分所面临的挑战
6.数据治理

第3章:什么是机器学习?
章节目标:介绍机器学习,识别/揭开学习类型的神秘面纱,并提供流行算法及其应用的信息
页数:45
子主题:
1.简介 - 什么是学习?
2.人与人之间的差异/相似之处,数据科学,机器学习,深度学习
3.学习的历史/演变
4.学习算法 - 流行的类型/类别,应用程序及其数学基础
5.用于学习的软件

第4章:医疗机器学习
章节目标:全面了解与学习系统相关的关键概念以及医疗机构内机器学习的实际应用
页数:50
子主题:
1.了解任务,性能和经验,以优化算法和结果
2.识别用于医疗保健应用的算法:预测分析,透视分析,推理,建模,概率估计,NLP等和常见用途
3.实时分析和分析
4.机器学习最佳实践
5.神经网络,人工神经网络,深度学习

第5章:评估智力学习
章节目标:要了解如何评估学习算法,如何选择最佳评估技术/方法进行分析
页数:10
1.如何评估机器学习系统
2.评估产出的方法
3.提高你的智力
4.高级分析

第六章:智力伦理
章节目标:了解人工智能/机器学习必须解决的障碍,同时克服微观和宏观层面的障碍,以增强健康智能
页数:25
1.大数据和机器学习的好处
2.大数据和机器学习的缺点 - 谁拥有数据,分发数据,应该告诉患者/人们结果是什么(例如数据显示癌症的风险)
3.数据是好还是数据不好?
4.需要解决的主题,以确保产出的简便性,效率和安全性
我们需要管理我们的情报吗?

第7章:医疗保健的未来
章节目标:概述医疗保健中人工智能和机器/深度学习的方向以及智能系统的未来应用
页数:30
1.循证医学
2.患者数据作为证据基础
3.医疗保健中断推动创新
4.对精确受众的概括如何实现个性化医疗
5.数据和物联网对实现个性化医疗的影响
6.道德规范怎么样?
7.结论

第8章:案例研究
章节目标:人工智能和机器/深度学习在医疗保健领域的真实应用
页数:20
1.实施机器学习的组织的真实案例研究以及用于确定最佳性能/结果的挑战,方法,算法和分析

相关实践学习
基于MaxCompute的热门话题分析
本实验围绕社交用户发布的文章做了详尽的分析,通过分析能得到用户群体年龄分布,性别分布,地理位置分布,以及热门话题的热度。
SaaS 模式云数据仓库必修课
本课程由阿里云开发者社区和阿里云大数据团队共同出品,是SaaS模式云原生数据仓库领导者MaxCompute核心课程。本课程由阿里云资深产品和技术专家们从概念到方法,从场景到实践,体系化的将阿里巴巴飞天大数据平台10多年的经过验证的方法与实践深入浅出的讲给开发者们。帮助大数据开发者快速了解并掌握SaaS模式的云原生的数据仓库,助力开发者学习了解先进的技术栈,并能在实际业务中敏捷的进行大数据分析,赋能企业业务。 通过本课程可以了解SaaS模式云原生数据仓库领导者MaxCompute核心功能及典型适用场景,可应用MaxCompute实现数仓搭建,快速进行大数据分析。适合大数据工程师、大数据分析师 大量数据需要处理、存储和管理,需要搭建数据仓库?学它! 没有足够人员和经验来运维大数据平台,不想自建IDC买机器,需要免运维的大数据平台?会SQL就等于会大数据?学它! 想知道大数据用得对不对,想用更少的钱得到持续演进的数仓能力?获得极致弹性的计算资源和更好的性能,以及持续保护数据安全的生产环境?学它! 想要获得灵活的分析能力,快速洞察数据规律特征?想要兼得数据湖的灵活性与数据仓库的成长性?学它! 出品人:阿里云大数据产品及研发团队专家 产品 MaxCompute 官网 https://www.aliyun.com/product/odps 
相关文章
|
11天前
|
机器学习/深度学习 人工智能 算法
探索AI在医疗诊断中的应用与挑战
【10月更文挑战第21天】 本文深入探讨了人工智能(AI)技术在医疗诊断领域的应用现状与面临的挑战,旨在为读者提供一个全面的视角,了解AI如何改变传统医疗模式,以及这一变革过程中所伴随的技术、伦理和法律问题。通过分析AI技术的优势和局限性,本文旨在促进对AI在医疗领域应用的更深层次理解和讨论。
|
24天前
|
数据采集 机器学习/深度学习 人工智能
AI在医疗诊断中的应用与挑战
随着人工智能(AI)技术的飞速发展,其在医疗领域的应用也日益广泛。从辅助医生进行疾病诊断到提供个性化治疗方案,AI技术正在改变着传统医疗模式。然而,AI在医疗诊断中的应用并非一帆风顺,面临着数据质量、模型可解释性、法规政策等一系列挑战。本文将从AI在医疗诊断中的具体应用场景出发,探讨其面临的主要挑战及未来发展趋势。
|
21天前
|
机器学习/深度学习 人工智能 安全
AI技术在医疗领域的应用与挑战
本文将探讨AI技术在医疗领域的应用及其带来的挑战。我们将介绍AI技术如何改变医疗行业的面貌,包括提高诊断准确性、个性化治疗方案和预测疾病风险等方面。同时,我们也将讨论AI技术在医疗领域面临的挑战,如数据隐私和安全问题、缺乏标准化和监管框架以及医生和患者对AI技术的接受程度等。最后,我们将通过一个代码示例来展示如何使用AI技术进行疾病预测。
36 2
|
25天前
|
机器学习/深度学习 人工智能 搜索推荐
AI技术在医疗领域的应用##
本文探讨了人工智能(AI)技术在医疗领域的应用,包括其在疾病诊断、治疗计划制定、患者监护和健康管理等方面的潜力。通过分析AI如何帮助医生更准确地诊断疾病,提高治疗效果,以及降低医疗成本,我们可以预见到一个更加智能、高效和人性化的医疗未来。 ##
|
22天前
|
机器学习/深度学习 人工智能 搜索推荐
AI技术在医疗领域的应用与前景
本文探讨了人工智能(AI)技术在医疗领域的应用,包括疾病诊断、治疗方案制定、药物研发等方面。通过对现有研究成果的梳理,分析了AI技术在提高医疗服务效率、降低医疗成本、改善患者体验等方面的潜力。同时,也指出了AI技术在医疗领域面临的挑战,如数据隐私保护、伦理道德问题等,并展望了未来的发展趋势。
82 2
|
23天前
|
机器学习/深度学习 人工智能 机器人
AI技术在医疗领域的应用及挑战
本文将探讨人工智能(AI)在医疗领域的应用及其面临的挑战。我们将从AI技术的定义和分类开始,然后详细介绍其在医疗领域的具体应用,如疾病诊断、药物研发等。最后,我们将讨论AI在医疗领域面临的挑战,包括数据隐私、伦理问题等。
|
23天前
|
机器学习/深度学习 人工智能 搜索推荐
AI技术在医疗领域的应用##
在现代医疗领域,人工智能(AI)技术正在逐步改变传统的诊疗方式。本文将探讨AI在医疗中的几个关键应用,包括医学影像分析、疾病预测和个性化治疗等。通过这些应用,AI不仅提高了诊断的准确性和效率,还为患者提供了更加精准的治疗方案。 ##
50 2
|
23天前
|
机器学习/深度学习 人工智能 搜索推荐
AI技术在医疗领域的应用与挑战
本文深入探讨了人工智能(AI)技术在医疗领域的应用现状、面临的挑战以及未来发展趋势。随着科技的飞速发展,AI技术正逐渐渗透到医疗行业的各个环节,从疾病诊断、治疗方案制定到患者管理等,都展现出巨大的潜力和价值。然而,AI技术的广泛应用也带来了数据安全、伦理道德、法规监管等一系列挑战。本文旨在通过分析AI技术在医疗领域的实际应用案例,揭示其优势与不足,为推动AI技术在医疗领域的健康发展提供参考。
60 1
|
24天前
|
机器学习/深度学习 人工智能 搜索推荐
AI技术在医疗领域的应用与前景####
本文深入探讨了人工智能(AI)技术在医疗健康领域中的多维度应用,从疾病诊断、个性化治疗到健康管理,展现了AI如何革新传统医疗模式。通过分析当前实践案例与最新研究成果,文章揭示了AI技术提升医疗服务效率、精准度及患者体验的巨大潜力,并展望了其在未来医疗体系中不可或缺的地位。 ####
|
23天前
|
机器学习/深度学习 人工智能 监控
AI技术在医疗领域的应用##
本文深入探讨了人工智能(AI)技术在医疗领域的多方面应用,包括疾病诊断、治疗方案优化、患者管理和远程医疗服务等。通过分析当前AI技术的发展趋势和挑战,文章旨在揭示AI如何改变传统医疗模式,提高医疗服务的效率和质量。此外,文章还讨论了AI技术在医疗领域面临的伦理和法律问题,以及未来的发展方向。 ##
28 0