[python作业AI毕业设计博客]人工智能医疗新书下载: Machine Learning and AI for Healthcare - 2019.pdf

本文涉及的产品
云原生大数据计算服务MaxCompute,500CU*H 100GB 3个月
简介: 下载地址:https://itbooks.pipipan.com/fs/18113597-335448646 探索人工智能(AI)和医疗机器学习的理论和实际应用。本书提供了机器学习算法,架构设计以及医疗保健和大数据挑战中学习应用的导览。

图片.png

下载地址:https://itbooks.pipipan.com/fs/18113597-335448646

探索人工智能(AI)和医疗机器学习的理论和实际应用。本书提供了机器学习算法,架构设计以及医疗保健和大数据挑战中学习应用的导览。

您将发现医疗保健数据分析的道德含义以及AI在人口和患者健康优化方面的未来。您还将创建机器学习模型,评估绩效并在组织内实施结果。

机器学习和医疗保健人工智能提供了如何在组织内应用机器学习并评估AI应用程序的功效,适用性和效率的技术。通过主要案例研究说明了这些,包括如何通过患者主导的数据学习和物联网重新定义慢性病。

你将学到什么

  • 深入了解关键机器学习算法及其在更广泛的医疗保健中的使用和实施
  • 实施机器学习系统,例如语音识别和增强的深度学习/ AI
  • 选择学习方法/算法和调整以用于医疗保健
  • 通过最佳实践,反馈循环和智能代理,认识并准备医疗保健中的人工智能的未来

本书适用于谁

对机器学习如何用于开发健康情报感兴趣的医疗保健专业人员 - 旨在改善患者健康,人口健康并促进显着的护理费用节省。

第1章:什么是人工智能
章节目标:介绍书籍和主题
页数:10
Sub -Topics
1.什么是人工智能,数据科学,机器和​​深度学习
2.从数据中学习的案例
3.大数据/学习/分析3.0的演变
4.在医疗保健环境中如何使用数据进行学习的实际示例
5.结论

第2章:数据
章节目标:了解学习所需的数据以及如何确保结果准确性的有效数据
页数:30
子主题
1.什么是数据,数据来源以及有哪些类型的数据?很少与大数据以及此类数据集的优缺点。结构化与非结构化数据。
2.数据所需的关键方面,特别是有效性,以确保只有有用和相关的信息
3.如何使用大数据进行学习(用例)
4.将数据转化为信息 - 如何收集可用于改善健康结果的数据以及如何收集此类数据的示例
5.作为大数据使用的一部分所面临的挑战
6.数据治理

第3章:什么是机器学习?
章节目标:介绍机器学习,识别/揭开学习类型的神秘面纱,并提供流行算法及其应用的信息
页数:45
子主题:
1.简介 - 什么是学习?
2.人与人之间的差异/相似之处,数据科学,机器学习,深度学习
3.学习的历史/演变
4.学习算法 - 流行的类型/类别,应用程序及其数学基础
5.用于学习的软件

第4章:医疗机器学习
章节目标:全面了解与学习系统相关的关键概念以及医疗机构内机器学习的实际应用
页数:50
子主题:
1.了解任务,性能和经验,以优化算法和结果
2.识别用于医疗保健应用的算法:预测分析,透视分析,推理,建模,概率估计,NLP等和常见用途
3.实时分析和分析
4.机器学习最佳实践
5.神经网络,人工神经网络,深度学习

第5章:评估智力学习
章节目标:要了解如何评估学习算法,如何选择最佳评估技术/方法进行分析
页数:10
1.如何评估机器学习系统
2.评估产出的方法
3.提高你的智力
4.高级分析

第六章:智力伦理
章节目标:了解人工智能/机器学习必须解决的障碍,同时克服微观和宏观层面的障碍,以增强健康智能
页数:25
1.大数据和机器学习的好处
2.大数据和机器学习的缺点 - 谁拥有数据,分发数据,应该告诉患者/人们结果是什么(例如数据显示癌症的风险)
3.数据是好还是数据不好?
4.需要解决的主题,以确保产出的简便性,效率和安全性
我们需要管理我们的情报吗?

第7章:医疗保健的未来
章节目标:概述医疗保健中人工智能和机器/深度学习的方向以及智能系统的未来应用
页数:30
1.循证医学
2.患者数据作为证据基础
3.医疗保健中断推动创新
4.对精确受众的概括如何实现个性化医疗
5.数据和物联网对实现个性化医疗的影响
6.道德规范怎么样?
7.结论

第8章:案例研究
章节目标:人工智能和机器/深度学习在医疗保健领域的真实应用
页数:20
1.实施机器学习的组织的真实案例研究以及用于确定最佳性能/结果的挑战,方法,算法和分析

相关实践学习
基于MaxCompute的热门话题分析
本实验围绕社交用户发布的文章做了详尽的分析,通过分析能得到用户群体年龄分布,性别分布,地理位置分布,以及热门话题的热度。
SaaS 模式云数据仓库必修课
本课程由阿里云开发者社区和阿里云大数据团队共同出品,是SaaS模式云原生数据仓库领导者MaxCompute核心课程。本课程由阿里云资深产品和技术专家们从概念到方法,从场景到实践,体系化的将阿里巴巴飞天大数据平台10多年的经过验证的方法与实践深入浅出的讲给开发者们。帮助大数据开发者快速了解并掌握SaaS模式的云原生的数据仓库,助力开发者学习了解先进的技术栈,并能在实际业务中敏捷的进行大数据分析,赋能企业业务。 通过本课程可以了解SaaS模式云原生数据仓库领导者MaxCompute核心功能及典型适用场景,可应用MaxCompute实现数仓搭建,快速进行大数据分析。适合大数据工程师、大数据分析师 大量数据需要处理、存储和管理,需要搭建数据仓库?学它! 没有足够人员和经验来运维大数据平台,不想自建IDC买机器,需要免运维的大数据平台?会SQL就等于会大数据?学它! 想知道大数据用得对不对,想用更少的钱得到持续演进的数仓能力?获得极致弹性的计算资源和更好的性能,以及持续保护数据安全的生产环境?学它! 想要获得灵活的分析能力,快速洞察数据规律特征?想要兼得数据湖的灵活性与数据仓库的成长性?学它! 出品人:阿里云大数据产品及研发团队专家 产品 MaxCompute 官网 https://www.aliyun.com/product/odps 
相关文章
|
1月前
|
人工智能 自然语言处理 算法
科研论文翻译神器!BabelDOC:开源AI工具让PDF论文秒变双语对照,公式图表全保留
BabelDOC 是一款专为科学论文设计的开源AI翻译工具,采用先进的无损解析技术和智能布局识别算法,能完美保留原文格式并生成双语对照翻译。
937 67
科研论文翻译神器!BabelDOC:开源AI工具让PDF论文秒变双语对照,公式图表全保留
|
5月前
|
机器学习/深度学习 人工智能 搜索推荐
探索人工智能在现代医疗中的革新应用
本文深入探讨了人工智能(AI)技术在医疗领域的最新进展,重点分析了AI如何通过提高诊断准确性、个性化治疗方案的制定以及优化患者管理流程来革新现代医疗。文章还讨论了AI技术面临的挑战和未来发展趋势,为读者提供了一个全面了解AI在医疗领域应用的视角。
140 11
|
6月前
|
机器学习/深度学习 存储 人工智能
人工智能在医疗领域的应用与挑战
【10月更文挑战第21天】 本文深入探讨了人工智能(AI)在医疗领域的应用现状与面临的挑战。随着科技的飞速发展,AI技术正逐步渗透到医疗行业的各个环节,从疾病诊断、治疗方案制定到患者管理等方面发挥着重要作用。然而,在推动医疗进步的同时,AI也面临着数据安全、隐私保护以及伦理道德等方面的严峻挑战。本文旨在全面分析AI在医疗领域的应用前景,并针对其面临的挑战提出相应的解决策略,以期为未来医疗行业的发展提供有益的参考。
292 6
|
5月前
|
机器学习/深度学习 人工智能 自然语言处理
人工智能在医疗诊断中的应用与前景####
本文深入探讨了人工智能(AI)技术在医疗诊断领域的应用现状、面临的挑战及未来发展趋势。通过分析AI如何辅助医生进行疾病诊断,提高诊断效率和准确性,以及其在个性化医疗中的潜力,文章揭示了AI技术对医疗行业变革的推动作用。同时,也指出了数据隐私、算法偏见等伦理问题,并展望了AI与人类医生协同工作的前景。 ####
492 0
|
5月前
|
机器学习/深度学习 人工智能 搜索推荐
医疗领域的人工智能:诊断和治疗的革命
医疗领域的人工智能:诊断和治疗的革命
264 84
|
3月前
|
人工智能 JSON 搜索推荐
猫步简历 - 开源免费AI简历生成器 | 一键导出PDF/JSON
猫步简历是一款免费开源的AI简历生成器,帮助用户轻松创建独特、专业的简历。支持导出超高清PDF、图片、JSON等多种格式,并提供AI智能创作、润色和多语种切换等功能。拥有海量模板、高度定制化模块及完善的后台管理系统,助力求职者脱颖而出。官网:https://maobucv.com,GitHub开源地址:https://github.com/Hacker233/resume-design。
834 10
|
4月前
|
机器学习/深度学习 人工智能 文字识别
Zerox:AI驱动的万能OCR工具,精准识别复杂布局并输出Markdown格式,支持PDF、DOCX、图片等多种文件格式
Zerox 是一款开源的本地化高精度OCR工具,基于GPT-4o-mini模型,支持PDF、DOCX、图片等多种格式文件,能够零样本识别复杂布局文档,输出Markdown格式结果。
365 4
Zerox:AI驱动的万能OCR工具,精准识别复杂布局并输出Markdown格式,支持PDF、DOCX、图片等多种文件格式
|
5月前
|
数据采集 人工智能 移动开发
盘点人工智能在医疗诊断领域的应用
人工智能在医疗诊断领域的应用广泛,包括医学影像诊断、疾病预测与风险评估、病理诊断、药物研发、医疗机器人、远程医疗诊断和智能辅助诊断系统等。这些应用提高了诊断的准确性和效率,改善了患者的治疗效果和生活质量。然而,数据质量和安全性、AI系统的透明度等问题仍需关注和解决。
631 10
|
5月前
|
机器学习/深度学习 人工智能 算法
探索人工智能在医疗诊断中的应用
本文深入探讨了人工智能(AI)技术在医疗诊断领域的革新性应用,通过分析AI如何助力提高诊断准确性、效率以及个性化治疗方案的制定,揭示了AI技术为现代医学带来的巨大潜力和挑战。文章还展望了AI在未来医疗中的发展趋势,强调了跨学科合作的重要性。 ###
311 14
|
6月前
|
机器学习/深度学习 人工智能 算法
探索人工智能在医疗诊断中的最新进展
探索人工智能在医疗诊断中的最新进展
193 14

热门文章

最新文章