[雪峰磁针石博客]大数据Hadoop工具python教程3-MapReduce

本文涉及的产品
云原生大数据计算服务MaxCompute,500CU*H 100GB 3个月
云原生大数据计算服务 MaxCompute,5000CU*H 100GB 3个月
简介: MapReduce是一种编程模型,通过将工作分成独立的任务并在一组机器上并行执行任务,可以处理和生成大量数据。 MapReduce编程风格的灵感来自函数式编程结构map和reduce,它们通常用于处理数据列表。

MapReduce是一种编程模型,通过将工作分成独立的任务并在一组机器上并行执行任务,可以处理和生成大量数据。 MapReduce编程风格的灵感来自函数式编程结构map和reduce,它们通常用于处理数据列表。在高层MapReduce程序将输入数据元素列表转换为输出数据元素列表两次,一次在映射阶段,一次在还原阶段。

本章首先介绍MapReduce编程模型,并描述数据如何流经模型的不同阶段。然后示例如何使用Python编写MapReduce作业。

数据流

MapReduce框架由三个主要阶段组成:map,shuffle和sort,以及reduce。

图片.png

  • map

在映射阶段,mapper函数处理一系列键值对。映射器按顺序处理键值对,产生零个或多个输出键值对。

比如将句子转换为单词。输入是包含句子的字符串,映射器将句子拆分为单词并输出单词。

图片.png

  • Shuffle和Sort

映射阶段的中间输出将移动到reducer。将输出从映射器移动到reducer的过程称为洗(shuffling)。

Shuffling由分区函数处理,称为partitioner。partitioner用于控制从映射器到reducer的键值对的流动。reducer知道映射器的输出键和reducer的数量,返回预期的reducer的索引。partitioner程序确保将同一键的所有值发送到同一reducer。默认分区程序是基于哈希的。它计算映射器输出键的哈希值,并根据此结果分配分区。

reducers开始处理数据之前的最后阶段是排序过程。在呈现给reducer之前,每个分区的中间键和值都由Hadoop框架排序。

  • Reduce

图片.png

在reducer阶段,值的迭代器被提供给称为reducer的函数。迭代器把值提供给reducer,这些值是唯一键的一组非唯一值。 reducer聚合每个唯一键的值,并产生零个或多个输出键值对。
数据流|

比如对键的所有值求和。此reducer的输入是键的所有值,reducer对所有值求和。然后,reducer输出键值对中包含输入键和输入键值的总和。

图片.png

参考资料

Hadoop流

Hadoop流是与Hadoop发行版一起打包的工具,它允许使用任何可执行文件创建MapReduce作业作为映射器和reducer。 Hadoop流实用程序支持Python,shell。

mapper和reducer都是可执行文件,它们从标准输入(stdin),逐行读取输入,并将写入标准输出(stdout)。 Hadoop流公国创建MapReduce作业,将作业提交到集群,并监视其进度直到完成。

mapper初始化时,每个映射任务都会将指定的可执行文件作为单独的进程启动。映射器读取输入文件,并通过stdin将每行显示给可执行文件。在可执行文件处理每行输入后,映射器从stdout收集输出并将每一行转换为键值对。键由第一个制表符前面的行部分组成,值由第一个制表符后面的行部分组成。如果一行不包含制表符,则整行被视为键,值为null。

初始化reducer时,每个reduce任务都会将指定的可执行文件作为单独的进程启动。 reducer将输入键值对转换为通过stdin呈现给可执行文件的行。

reducer从stdout收集可执行文件的结果,并将每一行转换为键值对。与映射器类似,可执行文件通过制表符分隔键和值来指定键值对。

下面我们用python来模拟Hadoop流工具。

mapper.py:在WordCount的map阶段实现逻辑的Python程序。它从stdin读取数据,将行拆分为单词,并将每个单词的中间计数输出到stdout。

#!/usr/bin/env python
# https://github.com/china-testing/python-api-tesing
import sys

# Read each line from STDIN
for line in sys.stdin:

   # Get the words in each line
   words = line.split()

   # Generate the count for each word
   for word in words:

      # Write the key-value pair to STDOUT to be processed by the reducer.
      # The key is anything before the first tab character and the value is
      # anything after the first tab character.
      print('{0}\t{1}'.format(word, 1))

reducer.py是在WordCount的reduce阶段实现逻辑的Python程序。它从stdin中读取mapper.py的结果,对每个单词的出现次数求和,并将结果写入stdout。

#!/usr/bin/env python
import sys

curr_word = None
curr_count = 0

# Process each key-value pair from the mapper
for line in sys.stdin:

   # Get the key and value from the current line
   word, count = line.split('\t')

   # Convert the count to an int
   count = int(count)

   # If the current word is the same as the previous word, increment its
   # count, otherwise print the words count to STDOUT
   if word == curr_word:
      curr_count += count
   else: 

      # Write word and its number of occurrences as a key-value pair to STDOUT
      if curr_word:
         print('{0}\t{1}'.format(curr_word, curr_count))

      curr_word = word
      curr_count = count

# Output the count for the last word
if curr_word == word:
   print('{0}\t{1}'.format(curr_word, curr_count))

执行

$ echo 'jack be nimble jack be quick' | ./mapper.py | sort -t 1 | ./reducer.py
be    2
jack    2
nimble    1
quick    1

现在我们把'jack be nimble jack be quick'存成/home/hduser_/input2.txt,用hadoop来实现这一过程。

$ hdfs dfs -put /home/hduser_/input2.txt /user/hduser
$ $HADOOP_HOME/bin/hadoop jar $HADOOP_HOME/share/hadoop/tools/lib/hadoop-streaming-2.9.2.jar -files mapper.py,reducer.py -mapper mapper.py -reducer reducer.py -input /user/hduser/input2.txt -output /user/hduser/output
19/01/22 10:44:38 INFO Configuration.deprecation: session.id is deprecated. Instead, use dfs.metrics.session-id
19/01/22 10:44:38 INFO jvm.JvmMetrics: Initializing JVM Metrics with processName=JobTracker, sessionId=
19/01/22 10:44:38 INFO jvm.JvmMetrics: Cannot initialize JVM Metrics with processName=JobTracker, sessionId= - already initialized
19/01/22 10:44:38 ERROR streaming.StreamJob: Error Launching job : Output directory hdfs://localhost:54310/user/hduser/output already exists
Streaming Command Failed!
hduser_@andrew-PC:/home/andrew/code/HadoopWithPython/python/MapReduce/HadoopStreaming$ $HADOOP_HOME/bin/hadoop jar $HADOOP_HOME/share/hadoop/tools/lib/hadoop-streaming-2.9.2.jar -files mapper.py,reducer.py -mapper mapper.py -reducer reducer.py -input /user/hduser/input2.txt -output /user/hduser/output2
19/01/22 10:44:45 INFO Configuration.deprecation: session.id is deprecated. Instead, use dfs.metrics.session-id
19/01/22 10:44:45 INFO jvm.JvmMetrics: Initializing JVM Metrics with processName=JobTracker, sessionId=
19/01/22 10:44:45 INFO jvm.JvmMetrics: Cannot initialize JVM Metrics with processName=JobTracker, sessionId= - already initialized
19/01/22 10:44:46 INFO mapred.FileInputFormat: Total input files to process : 1
19/01/22 10:44:46 INFO mapreduce.JobSubmitter: number of splits:1
19/01/22 10:44:46 INFO mapreduce.JobSubmitter: Submitting tokens for job: job_local208759810_0001
19/01/22 10:44:46 INFO mapred.LocalDistributedCacheManager: Localized file:/home/andrew/code/HadoopWithPython/python/MapReduce/HadoopStreaming/mapper.py as file:/app/hadoop/tmp/mapred/local/1548125086275/mapper.py
19/01/22 10:44:46 INFO mapred.LocalDistributedCacheManager: Localized file:/home/andrew/code/HadoopWithPython/python/MapReduce/HadoopStreaming/reducer.py as file:/app/hadoop/tmp/mapred/local/1548125086276/reducer.py
19/01/22 10:44:46 INFO mapreduce.Job: The url to track the job: http://localhost:8080/
19/01/22 10:44:46 INFO mapred.LocalJobRunner: OutputCommitter set in config null
19/01/22 10:44:46 INFO mapreduce.Job: Running job: job_local208759810_0001
19/01/22 10:44:46 INFO mapred.LocalJobRunner: OutputCommitter is org.apache.hadoop.mapred.FileOutputCommitter
19/01/22 10:44:46 INFO output.FileOutputCommitter: File Output Committer Algorithm version is 1
19/01/22 10:44:46 INFO output.FileOutputCommitter: FileOutputCommitter skip cleanup _temporary folders under output directory:false, ignore cleanup failures: false
19/01/22 10:44:46 INFO mapred.LocalJobRunner: Waiting for map tasks
19/01/22 10:44:46 INFO mapred.LocalJobRunner: Starting task: attempt_local208759810_0001_m_000000_0
19/01/22 10:44:46 INFO output.FileOutputCommitter: File Output Committer Algorithm version is 1
19/01/22 10:44:46 INFO output.FileOutputCommitter: FileOutputCommitter skip cleanup _temporary folders under output directory:false, ignore cleanup failures: false
19/01/22 10:44:46 INFO mapred.Task:  Using ResourceCalculatorProcessTree : [ ]
19/01/22 10:44:46 INFO mapred.MapTask: Processing split: hdfs://localhost:54310/user/hduser/input2.txt:0+29
19/01/22 10:44:46 INFO mapred.MapTask: numReduceTasks: 1
19/01/22 10:44:46 INFO mapred.MapTask: (EQUATOR) 0 kvi 26214396(104857584)
19/01/22 10:44:46 INFO mapred.MapTask: mapreduce.task.io.sort.mb: 100
19/01/22 10:44:46 INFO mapred.MapTask: soft limit at 83886080
19/01/22 10:44:46 INFO mapred.MapTask: bufstart = 0; bufvoid = 104857600
19/01/22 10:44:46 INFO mapred.MapTask: kvstart = 26214396; length = 6553600
19/01/22 10:44:46 INFO mapred.MapTask: Map output collector class = org.apache.hadoop.mapred.MapTask$MapOutputBuffer
19/01/22 10:44:46 INFO streaming.PipeMapRed: PipeMapRed exec [/home/andrew/code/HadoopWithPython/python/MapReduce/HadoopStreaming/./mapper.py]
19/01/22 10:44:46 INFO Configuration.deprecation: mapred.work.output.dir is deprecated. Instead, use mapreduce.task.output.dir
19/01/22 10:44:46 INFO Configuration.deprecation: map.input.start is deprecated. Instead, use mapreduce.map.input.start
19/01/22 10:44:46 INFO Configuration.deprecation: mapred.task.is.map is deprecated. Instead, use mapreduce.task.ismap
19/01/22 10:44:46 INFO Configuration.deprecation: mapred.task.id is deprecated. Instead, use mapreduce.task.attempt.id
19/01/22 10:44:46 INFO Configuration.deprecation: mapred.tip.id is deprecated. Instead, use mapreduce.task.id
19/01/22 10:44:46 INFO Configuration.deprecation: mapred.local.dir is deprecated. Instead, use mapreduce.cluster.local.dir
19/01/22 10:44:46 INFO Configuration.deprecation: map.input.file is deprecated. Instead, use mapreduce.map.input.file
19/01/22 10:44:46 INFO Configuration.deprecation: mapred.skip.on is deprecated. Instead, use mapreduce.job.skiprecords
19/01/22 10:44:46 INFO Configuration.deprecation: map.input.length is deprecated. Instead, use mapreduce.map.input.length
19/01/22 10:44:46 INFO Configuration.deprecation: mapred.job.id is deprecated. Instead, use mapreduce.job.id
19/01/22 10:44:46 INFO Configuration.deprecation: user.name is deprecated. Instead, use mapreduce.job.user.name
19/01/22 10:44:46 INFO Configuration.deprecation: mapred.task.partition is deprecated. Instead, use mapreduce.task.partition
19/01/22 10:44:46 INFO streaming.PipeMapRed: R/W/S=1/0/0 in:NA [rec/s] out:NA [rec/s]
19/01/22 10:44:46 INFO streaming.PipeMapRed: Records R/W=1/1
19/01/22 10:44:46 INFO streaming.PipeMapRed: MRErrorThread done
19/01/22 10:44:46 INFO streaming.PipeMapRed: mapRedFinished
19/01/22 10:44:46 INFO mapred.LocalJobRunner: 
19/01/22 10:44:46 INFO mapred.MapTask: Starting flush of map output
19/01/22 10:44:46 INFO mapred.MapTask: Spilling map output
19/01/22 10:44:46 INFO mapred.MapTask: bufstart = 0; bufend = 41; bufvoid = 104857600
19/01/22 10:44:46 INFO mapred.MapTask: kvstart = 26214396(104857584); kvend = 26214376(104857504); length = 21/6553600
19/01/22 10:44:46 INFO mapred.MapTask: Finished spill 0
19/01/22 10:44:46 INFO mapred.Task: Task:attempt_local208759810_0001_m_000000_0 is done. And is in the process of committing
19/01/22 10:44:46 INFO mapred.LocalJobRunner: Records R/W=1/1
19/01/22 10:44:46 INFO mapred.Task: Task 'attempt_local208759810_0001_m_000000_0' done.
19/01/22 10:44:46 INFO mapred.LocalJobRunner: Finishing task: attempt_local208759810_0001_m_000000_0
19/01/22 10:44:46 INFO mapred.LocalJobRunner: map task executor complete.
19/01/22 10:44:46 INFO mapred.LocalJobRunner: Waiting for reduce tasks
19/01/22 10:44:46 INFO mapred.LocalJobRunner: Starting task: attempt_local208759810_0001_r_000000_0
19/01/22 10:44:46 INFO output.FileOutputCommitter: File Output Committer Algorithm version is 1
19/01/22 10:44:46 INFO output.FileOutputCommitter: FileOutputCommitter skip cleanup _temporary folders under output directory:false, ignore cleanup failures: false
19/01/22 10:44:46 INFO mapred.Task:  Using ResourceCalculatorProcessTree : [ ]
19/01/22 10:44:46 INFO mapred.ReduceTask: Using ShuffleConsumerPlugin: org.apache.hadoop.mapreduce.task.reduce.Shuffle@78674b51
19/01/22 10:44:46 INFO reduce.MergeManagerImpl: MergerManager: memoryLimit=334338464, maxSingleShuffleLimit=83584616, mergeThreshold=220663392, ioSortFactor=10, memToMemMergeOutputsThreshold=10
19/01/22 10:44:46 INFO reduce.EventFetcher: attempt_local208759810_0001_r_000000_0 Thread started: EventFetcher for fetching Map Completion Events
19/01/22 10:44:46 INFO reduce.LocalFetcher: localfetcher#1 about to shuffle output of map attempt_local208759810_0001_m_000000_0 decomp: 55 len: 59 to MEMORY
19/01/22 10:44:46 INFO reduce.InMemoryMapOutput: Read 55 bytes from map-output for attempt_local208759810_0001_m_000000_0
19/01/22 10:44:46 INFO reduce.MergeManagerImpl: closeInMemoryFile -> map-output of size: 55, inMemoryMapOutputs.size() -> 1, commitMemory -> 0, usedMemory ->55
19/01/22 10:44:46 INFO reduce.EventFetcher: EventFetcher is interrupted.. Returning
19/01/22 10:44:46 INFO mapred.LocalJobRunner: 1 / 1 copied.
19/01/22 10:44:46 INFO reduce.MergeManagerImpl: finalMerge called with 1 in-memory map-outputs and 0 on-disk map-outputs
19/01/22 10:44:46 INFO mapred.Merger: Merging 1 sorted segments
19/01/22 10:44:46 INFO mapred.Merger: Down to the last merge-pass, with 1 segments left of total size: 50 bytes
19/01/22 10:44:46 INFO reduce.MergeManagerImpl: Merged 1 segments, 55 bytes to disk to satisfy reduce memory limit
19/01/22 10:44:46 INFO reduce.MergeManagerImpl: Merging 1 files, 59 bytes from disk
19/01/22 10:44:46 INFO reduce.MergeManagerImpl: Merging 0 segments, 0 bytes from memory into reduce
19/01/22 10:44:46 INFO mapred.Merger: Merging 1 sorted segments
19/01/22 10:44:46 INFO mapred.Merger: Down to the last merge-pass, with 1 segments left of total size: 50 bytes
19/01/22 10:44:46 INFO mapred.LocalJobRunner: 1 / 1 copied.
19/01/22 10:44:46 INFO streaming.PipeMapRed: PipeMapRed exec [/home/andrew/code/HadoopWithPython/python/MapReduce/HadoopStreaming/./reducer.py]
19/01/22 10:44:46 INFO Configuration.deprecation: mapred.job.tracker is deprecated. Instead, use mapreduce.jobtracker.address
19/01/22 10:44:46 INFO Configuration.deprecation: mapred.map.tasks is deprecated. Instead, use mapreduce.job.maps
19/01/22 10:44:46 INFO streaming.PipeMapRed: R/W/S=1/0/0 in:NA [rec/s] out:NA [rec/s]
19/01/22 10:44:46 INFO streaming.PipeMapRed: Records R/W=6/1
19/01/22 10:44:46 INFO streaming.PipeMapRed: MRErrorThread done
19/01/22 10:44:46 INFO streaming.PipeMapRed: mapRedFinished
19/01/22 10:44:46 INFO mapred.Task: Task:attempt_local208759810_0001_r_000000_0 is done. And is in the process of committing
19/01/22 10:44:46 INFO mapred.LocalJobRunner: 1 / 1 copied.
19/01/22 10:44:46 INFO mapred.Task: Task attempt_local208759810_0001_r_000000_0 is allowed to commit now
19/01/22 10:44:46 INFO output.FileOutputCommitter: Saved output of task 'attempt_local208759810_0001_r_000000_0' to hdfs://localhost:54310/user/hduser/output2/_temporary/0/task_local208759810_0001_r_000000
19/01/22 10:44:46 INFO mapred.LocalJobRunner: Records R/W=6/1 > reduce
19/01/22 10:44:46 INFO mapred.Task: Task 'attempt_local208759810_0001_r_000000_0' done.
19/01/22 10:44:46 INFO mapred.LocalJobRunner: Finishing task: attempt_local208759810_0001_r_000000_0
19/01/22 10:44:46 INFO mapred.LocalJobRunner: reduce task executor complete.
19/01/22 10:44:47 INFO mapreduce.Job: Job job_local208759810_0001 running in uber mode : false
19/01/22 10:44:47 INFO mapreduce.Job:  map 100% reduce 100%
19/01/22 10:44:47 INFO mapreduce.Job: Job job_local208759810_0001 completed successfully
19/01/22 10:44:47 INFO mapreduce.Job: Counters: 35
    File System Counters
        FILE: Number of bytes read=273356
        FILE: Number of bytes written=1217709
        FILE: Number of read operations=0
        FILE: Number of large read operations=0
        FILE: Number of write operations=0
        HDFS: Number of bytes read=58
        HDFS: Number of bytes written=29
        HDFS: Number of read operations=13
        HDFS: Number of large read operations=0
        HDFS: Number of write operations=4
    Map-Reduce Framework
        Map input records=1
        Map output records=6
        Map output bytes=41
        Map output materialized bytes=59
        Input split bytes=97
        Combine input records=0
        Combine output records=0
        Reduce input groups=4
        Reduce shuffle bytes=59
        Reduce input records=6
        Reduce output records=4
        Spilled Records=12
        Shuffled Maps =1
        Failed Shuffles=0
        Merged Map outputs=1
        GC time elapsed (ms)=0
        Total committed heap usage (bytes)=552599552
    Shuffle Errors
        BAD_ID=0
        CONNECTION=0
        IO_ERROR=0
        WRONG_LENGTH=0
        WRONG_MAP=0
        WRONG_REDUCE=0
    File Input Format Counters 
        Bytes Read=29
    File Output Format Counters 
        Bytes Written=29
19/01/22 10:44:47 INFO streaming.StreamJob: Output directory: /user/hduser/output2
$ hdfs dfs -cat  /user/hduser/output2/part-00000
be    2
jack    2
nimble    1
quick    1
相关实践学习
基于MaxCompute的热门话题分析
本实验围绕社交用户发布的文章做了详尽的分析,通过分析能得到用户群体年龄分布,性别分布,地理位置分布,以及热门话题的热度。
SaaS 模式云数据仓库必修课
本课程由阿里云开发者社区和阿里云大数据团队共同出品,是SaaS模式云原生数据仓库领导者MaxCompute核心课程。本课程由阿里云资深产品和技术专家们从概念到方法,从场景到实践,体系化的将阿里巴巴飞天大数据平台10多年的经过验证的方法与实践深入浅出的讲给开发者们。帮助大数据开发者快速了解并掌握SaaS模式的云原生的数据仓库,助力开发者学习了解先进的技术栈,并能在实际业务中敏捷的进行大数据分析,赋能企业业务。 通过本课程可以了解SaaS模式云原生数据仓库领导者MaxCompute核心功能及典型适用场景,可应用MaxCompute实现数仓搭建,快速进行大数据分析。适合大数据工程师、大数据分析师 大量数据需要处理、存储和管理,需要搭建数据仓库?学它! 没有足够人员和经验来运维大数据平台,不想自建IDC买机器,需要免运维的大数据平台?会SQL就等于会大数据?学它! 想知道大数据用得对不对,想用更少的钱得到持续演进的数仓能力?获得极致弹性的计算资源和更好的性能,以及持续保护数据安全的生产环境?学它! 想要获得灵活的分析能力,快速洞察数据规律特征?想要兼得数据湖的灵活性与数据仓库的成长性?学它! 出品人:阿里云大数据产品及研发团队专家 产品 MaxCompute 官网 https://www.aliyun.com/product/odps 
相关文章
|
3月前
|
机器学习/深度学习 算法 搜索推荐
从理论到实践,Python算法复杂度分析一站式教程,助你轻松驾驭大数据挑战!
【10月更文挑战第4天】在大数据时代,算法效率至关重要。本文从理论入手,介绍时间复杂度和空间复杂度两个核心概念,并通过冒泡排序和快速排序的Python实现详细分析其复杂度。冒泡排序的时间复杂度为O(n^2),空间复杂度为O(1);快速排序平均时间复杂度为O(n log n),空间复杂度为O(log n)。文章还介绍了算法选择、分而治之及空间换时间等优化策略,帮助你在大数据挑战中游刃有余。
95 3
|
3月前
|
分布式计算 Kubernetes Hadoop
大数据-82 Spark 集群模式启动、集群架构、集群管理器 Spark的HelloWorld + Hadoop + HDFS
大数据-82 Spark 集群模式启动、集群架构、集群管理器 Spark的HelloWorld + Hadoop + HDFS
206 6
|
3月前
|
分布式计算 资源调度 Hadoop
大数据-80 Spark 简要概述 系统架构 部署模式 与Hadoop MapReduce对比
大数据-80 Spark 简要概述 系统架构 部署模式 与Hadoop MapReduce对比
91 2
|
17天前
|
存储 分布式计算 大数据
Flume+Hadoop:打造你的大数据处理流水线
本文介绍了如何使用Apache Flume采集日志数据并上传至Hadoop分布式文件系统(HDFS)。Flume是一个高可用、可靠的分布式系统,适用于大规模日志数据的采集和传输。文章详细描述了Flume的安装、配置及启动过程,并通过具体示例展示了如何将本地日志数据实时传输到HDFS中。同时,还提供了验证步骤,确保数据成功上传。最后,补充说明了使用文件模式作为channel以避免数据丢失的方法。
54 4
|
18天前
|
分布式计算 大数据 数据处理
技术评测:MaxCompute MaxFrame——阿里云自研分布式计算框架的Python编程接口
随着大数据和人工智能技术的发展,数据处理的需求日益增长。阿里云推出的MaxCompute MaxFrame(简称“MaxFrame”)是一个专为Python开发者设计的分布式计算框架,它不仅支持Python编程接口,还能直接利用MaxCompute的云原生大数据计算资源和服务。本文将通过一系列最佳实践测评,探讨MaxFrame在分布式Pandas处理以及大语言模型数据处理场景中的表现,并分析其在实际工作中的应用潜力。
57 2
|
1月前
|
数据采集 分布式计算 Hadoop
使用Hadoop MapReduce进行大规模数据爬取
使用Hadoop MapReduce进行大规模数据爬取
|
2月前
|
存储 分布式计算 Hadoop
数据湖技术:Hadoop与Spark在大数据处理中的协同作用
【10月更文挑战第27天】在大数据时代,数据湖技术凭借其灵活性和成本效益成为企业存储和分析大规模异构数据的首选。Hadoop和Spark作为数据湖技术的核心组件,通过HDFS存储数据和Spark进行高效计算,实现了数据处理的优化。本文探讨了Hadoop与Spark的最佳实践,包括数据存储、处理、安全和可视化等方面,展示了它们在实际应用中的协同效应。
138 2
|
2月前
|
存储 分布式计算 Hadoop
数据湖技术:Hadoop与Spark在大数据处理中的协同作用
【10月更文挑战第26天】本文详细探讨了Hadoop与Spark在大数据处理中的协同作用,通过具体案例展示了两者的最佳实践。Hadoop的HDFS和MapReduce负责数据存储和预处理,确保高可靠性和容错性;Spark则凭借其高性能和丰富的API,进行深度分析和机器学习,实现高效的批处理和实时处理。
99 1
|
2月前
|
并行计算 数据挖掘 大数据
Python数据分析实战:利用Pandas处理大数据集
Python数据分析实战:利用Pandas处理大数据集
|
3月前
|
分布式计算 Hadoop 大数据
大数据体系知识学习(一):PySpark和Hadoop环境的搭建与测试
这篇文章是关于大数据体系知识学习的,主要介绍了Apache Spark的基本概念、特点、组件,以及如何安装配置Java、PySpark和Hadoop环境。文章还提供了详细的安装步骤和测试代码,帮助读者搭建和测试大数据环境。
92 1