04 贝叶斯算法 - 贝叶斯网络

简介:

01 贝叶斯算法 - 朴素贝叶斯
02 贝叶斯算法 - 案例一 - 鸢尾花数据分类
03 贝叶斯算法 - 案例二 - 新闻数据分类

之前聚类算法中讲了__无向图__的聚类算法 - __谱聚类__。
13 聚类算法 - 谱聚类

本章介绍的贝叶斯算法是__有向图__的聚类算法。

区别:
__谱聚类__的无向图里的点里放的是__样本__。
__贝叶斯网络__的有向图的点里放的是__样本的特征__。


六、贝叶斯网络

把某个研究系统中涉及到的__随机变量__,根据是否条件独立绘制在一个有向图中,就形成了贝叶斯网络。__贝叶斯网络(Bayesian Network)__,又称有向无__环图模型__(directed acyclic graphical model, DAG);

贝叶斯网络 是一种概率图模型,根据概率图的拓扑结构,考察一组随机变量:{X1,X2,...,Xn}及其N组条件概率分布(Conditional ProbabililtyDistributions, CPD)的性质。

当多个特征属性之间__存在着某种相关关系__的时候,使用朴素贝叶斯算法就没法解决这类问题,那么贝叶斯网络就是解决这类应用场景的一个非常好的算法。

分析: 很好理解上面的概念,先回顾下面的算法,朴素贝叶斯算法要求的是互相独立的事件形成出x1~xn,这些特征彼此概率互不影响,所以才能求出联合概率密度。贝叶斯网络算法就是来解决有关联的特征组成的样本分类的。

朴素贝叶斯


一般而言,贝叶斯网络的有向无环图中的节点表示随机变量,可以是可观察到的变量,或隐变量,未知参数等等。连接两个节点之间的箭头代表两个随机变量之间的因果关系(也就是这两个随机变量之间非条件独立);如果两个节点间以一个单箭头连接在一起,表示其中一个节点是“因”,另外一个节点是“果”,从而两节点之间就会产生一个条件概率值。

__PS:__每个节点在给定其直接前驱的时候,条件独立于其非后继。

贝叶斯网络的关键方法是图模型,构建一个图模型我们需要把具有因果联系的各个变量用箭头连在一起。贝叶斯网络的有向无环图中的节点表示随机变量。连接两个节点的箭头代表此两个随机变量是具有因果关系的。
$color{red}{首先找到所有样本特征的因果关系,即找到有向图}$

贝叶斯网络是模拟人的认知思维推理模式的,用一组条件概率以及有向无环图对不确定性因果推理关系建模。
$color{red}{最后的目的还是求出联合概率P(x1,x2,..xn)}$


1、最简单的一个贝叶斯网络

目标,求P(a,b,c)
a的概率和任何别的特征都无关,所以先求a的概率:P(a);
b的生成和a有关。即a发生的情况下,b发生的概率:P(b|a);
c的生成和a、b有关。即a和b同事发生的情况下,c发生的概率。P(c|a,b);

最简单的一个贝叶斯网络

2、全连接贝叶斯网络

![全连接贝叶斯网络
](https://upload-images.jianshu.io/upload_images/3153092-d5be6101a9ca9068.png?imageMogr2/auto-orient/strip%7CimageView2/2/w/1240)

3、“正常”贝叶斯网络

正常贝叶斯网络

4、实际贝叶斯网络:判断是否下雨

有一天早晨,白尔摩斯离开他的房子的时候发现他家花园中的草地是湿的,有两种可能,第一:昨天晚上下雨了,第二:他昨天晚上忘记关掉花园中的喷水器,接下来,他观察他的邻居华生,发现他家花园中的草地也是湿的,因此,他推断,他家的草地湿了是因为昨天晚上下雨的缘故。


七、贝叶斯网络判定条件独立

那么在贝叶斯网络中,哪些条件下我们可以认为是条件独立的?

条件一:
在C给定的条件下,a和b被阻断(blocked)是独立的。
即只要C给定了,a、b就独立。
条件独立:tail - to -tail


条件二:
在C给定的条件下,a和b被阻断(blocked)是独立的。
条件独立:head- to -tail


条件三:
在C未知的情况下,a和b被阻断(blocked),是独立的。
条件独立:head - to - head

相关文章
|
4天前
|
机器学习/深度学习 人工智能 算法
基于Python深度学习的【垃圾识别系统】实现~TensorFlow+人工智能+算法网络
垃圾识别分类系统。本系统采用Python作为主要编程语言,通过收集了5种常见的垃圾数据集('塑料', '玻璃', '纸张', '纸板', '金属'),然后基于TensorFlow搭建卷积神经网络算法模型,通过对图像数据集进行多轮迭代训练,最后得到一个识别精度较高的模型文件。然后使用Django搭建Web网页端可视化操作界面,实现用户在网页端上传一张垃圾图片识别其名称。
21 0
基于Python深度学习的【垃圾识别系统】实现~TensorFlow+人工智能+算法网络
|
20天前
|
机器学习/深度学习 人工智能 算法
【车辆车型识别】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+算法模型
车辆车型识别,使用Python作为主要编程语言,通过收集多种车辆车型图像数据集,然后基于TensorFlow搭建卷积网络算法模型,并对数据集进行训练,最后得到一个识别精度较高的模型文件。再基于Django搭建web网页端操作界面,实现用户上传一张车辆图片识别其类型。
65 0
【车辆车型识别】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+算法模型
|
22天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于贝叶斯优化CNN-LSTM网络的数据分类识别算法matlab仿真
本项目展示了基于贝叶斯优化(BO)的CNN-LSTM网络在数据分类中的应用。通过MATLAB 2022a实现,优化前后效果对比明显。核心代码附带中文注释和操作视频,涵盖BO、CNN、LSTM理论,特别是BO优化CNN-LSTM网络的batchsize和学习率,显著提升模型性能。
|
1月前
|
机器学习/深度学习 算法 数据挖掘
基于GWO灰狼优化的GroupCNN分组卷积网络时间序列预测算法matlab仿真
本项目展示了基于分组卷积神经网络(GroupCNN)和灰狼优化(GWO)的时间序列回归预测算法。算法运行效果良好,无水印展示。使用Matlab2022a开发,提供完整代码及详细中文注释。GroupCNN通过分组卷积减少计算成本,GWO则优化超参数,提高预测性能。项目包含操作步骤视频,方便用户快速上手。
|
1月前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于WOA鲸鱼优化的GroupCNN分组卷积网络时间序列预测算法matlab仿真
本项目展示了一种基于WOA优化的GroupCNN分组卷积网络时间序列预测算法。使用Matlab2022a开发,提供无水印运行效果预览及核心代码(含中文注释)。算法通过WOA优化网络结构与超参数,结合分组卷积技术,有效提升预测精度与效率。分组卷积减少了计算成本,而WOA则模拟鲸鱼捕食行为进行优化,适用于多种连续优化问题。
|
1月前
|
机器学习/深度学习 算法 5G
基于BP神经网络的CoSaMP信道估计算法matlab性能仿真,对比LS,OMP,MOMP,CoSaMP
本文介绍了基于Matlab 2022a的几种信道估计算法仿真,包括LS、OMP、NOMP、CoSaMP及改进的BP神经网络CoSaMP算法。各算法针对毫米波MIMO信道进行了性能评估,通过对比不同信噪比下的均方误差(MSE),展示了各自的优势与局限性。其中,BP神经网络改进的CoSaMP算法在低信噪比条件下表现尤为突出,能够有效提高信道估计精度。
36 2
|
27天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于贝叶斯优化卷积神经网络(Bayes-CNN)的多因子数据分类识别算法matlab仿真
本项目展示了贝叶斯优化在CNN中的应用,包括优化过程、训练与识别效果对比,以及标准CNN的识别结果。使用Matlab2022a开发,提供完整代码及视频教程。贝叶斯优化通过构建代理模型指导超参数优化,显著提升模型性能,适用于复杂数据分类任务。
|
29天前
|
机器学习/深度学习 算法 数据建模
计算机前沿技术-人工智能算法-生成对抗网络-算法原理及应用实践
计算机前沿技术-人工智能算法-生成对抗网络-算法原理及应用实践
25 0
|
24天前
|
算法 安全 数据安全/隐私保护
基于game-based算法的动态频谱访问matlab仿真
本算法展示了在认知无线电网络中,通过游戏理论优化动态频谱访问,提高频谱利用率和物理层安全性。程序运行效果包括负载因子、传输功率、信噪比对用户效用和保密率的影响分析。软件版本:Matlab 2022a。完整代码包含详细中文注释和操作视频。
|
9天前
|
算法 数据挖掘 数据安全/隐私保护
基于FCM模糊聚类算法的图像分割matlab仿真
本项目展示了基于模糊C均值(FCM)算法的图像分割技术。算法运行效果良好,无水印。使用MATLAB 2022a开发,提供完整代码及中文注释,附带操作步骤视频。FCM算法通过隶属度矩阵和聚类中心矩阵实现图像分割,适用于灰度和彩色图像,广泛应用于医学影像、遥感图像等领域。