高并发架构系列:Redis缓存和MySQL数据一致性方案详解

本文涉及的产品
云数据库 Redis 版,社区版 2GB
推荐场景:
搭建游戏排行榜
云数据库 RDS MySQL Serverless,0.5-2RCU 50GB
简介: 一、需求起因 在高并发的业务场景下,数据库大多数情况都是用户并发访问最薄弱的环节。所以,就需要使用redis做一个缓冲操作,让请求先访问到redis,而不是直接访问MySQL等数据库。 这个业务场景,主要是解决读数据从Redis缓存,一般都是按照下图的流程来进行业务操作。

一、需求起因

在高并发的业务场景下,数据库大多数情况都是用户并发访问最薄弱的环节。所以,就需要使用redis做一个缓冲操作,让请求先访问到redis,而不是直接访问MySQL等数据库。

这个业务场景,主要是解决读数据从Redis缓存,一般都是按照下图的流程来进行业务操作。

读取缓存步骤一般没有什么问题,但是一旦涉及到数据更新:数据库和缓存更新,就容易出现缓存(Redis)和数据库(MySQL)间的数据一致性问题。

不管是先写MySQL数据库,再删除Redis缓存;还是先删除缓存,再写库,都有可能出现数据不一致的情况。举一个例子:

1.如果删除了缓存Redis,还没有来得及写库MySQL,另一个线程就来读取,发现缓存为空,则去数据库中读取数据写入缓存,此时缓存中为脏数据。
2.如果先写了库,在删除缓存前,写库的线程宕机了,没有删除掉缓存,则也会出现数据不一致情况。
因为写和读是并发的,没法保证顺序,就会出现缓存和数据库的数据不一致的问题。

如来解决?这里给出两个解决方案,先易后难,结合业务和技术代价选择使用。

二、缓存和数据库一致性解决方案

1.第一种方案:采用延时双删策略
在写库前后都进行redis.del(key)操作,并且设定合理的超时时间。
伪代码如下:

public void write(String key,Object data){
redis.delKey(key);

db.updateData(data);
Thread.sleep(500);
redis.delKey(key);
}

具体的步骤就是:

  • 先删除缓存;
  • 再写数据库;
  • 休眠500毫秒;
  • 再次删除缓存。

那么,这个500毫秒怎么确定的,具体该休眠多久呢?

需要评估自己的项目的读数据业务逻辑的耗时。这么做的目的,就是确保读请求结束,写请求可以删除读请求造成的缓存脏数据。

当然这种策略还要考虑redis和数据库主从同步的耗时。最后的的写数据的休眠时间:则在读数据业务逻辑的耗时基础上,加几百ms即可。比如:休眠1秒。

设置缓存过期时间

从理论上来说,给缓存设置过期时间,是保证最终一致性的解决方案。所有的写操作以数据库为准,只要到达缓存过期时间,则后面的读请求自然会从数据库中读取新值然后回填缓存。

该方案的弊端

结合双删策略+缓存超时设置,这样最差的情况就是在超时时间内数据存在不一致,而且又增加了写请求的耗时。

2、第二种方案:异步更新缓存(基于订阅binlog的同步机制)

技术整体思路:
MySQL binlog增量订阅消费+消息队列+增量数据更新到redis
读Redis:热数据基本都在Redis
写MySQL:增删改都是操作MySQL
更新Redis数据:MySQ的数据操作binlog,来更新到Redis

Redis更新

1)数据操作主要分为两大块:

一个是全量(将全部数据一次写入到redis)
一个是增量(实时更新)
这里说的是增量,指的是mysql的update、insert、delate变更数据。

2)读取binlog后分析,利用消息队列,推送更新各台的redis缓存数据。

这样一旦MySQL中产生了新的写入、更新、删除等操作,就可以把binlog相关的消息推送至Redis,Redis再根据binlog中的记录,对Redis进行更新。

其实这种机制,很类似MySQL的主从备份机制,因为MySQL的主备也是通过binlog来实现的数据一致性。

这里可以结合使用canal(阿里的一款开源框架),通过该框架可以对MySQL的binlog进行订阅,而canal正是模仿了mysql的slave数据库的备份请求,使得Redis的数据更新达到了相同的效果。

当然,这里的消息推送工具你也可以采用别的第三方:kafka、rabbitMQ等来实现推送更新Redis。

以上就是Redis和MySQL数据一致性详解,觉得不错请点赞支持。

【mikechen优知】往期博文:

码了几年代码的程序员,有一定的开发经验,应该如何提升自己?

分布式消息系列:详解RocketMQ的简介与演进、架构设计、关键特性与应用场景

高并发架构系列:Kafka、RocketMQ、RabbitMQ的优劣势比较

Java 面试题目最全集合1000+ 大放送,能答对70%就去BATJTMD试试~

相关实践学习
基于Redis实现在线游戏积分排行榜
本场景将介绍如何基于Redis数据库实现在线游戏中的游戏玩家积分排行榜功能。
云数据库 Redis 版使用教程
云数据库Redis版是兼容Redis协议标准的、提供持久化的内存数据库服务,基于高可靠双机热备架构及可无缝扩展的集群架构,满足高读写性能场景及容量需弹性变配的业务需求。 产品详情:https://www.aliyun.com/product/kvstore     ------------------------------------------------------------------------- 阿里云数据库体验:数据库上云实战 开发者云会免费提供一台带自建MySQL的源数据库 ECS 实例和一台目标数据库 RDS实例。跟着指引,您可以一步步实现将ECS自建数据库迁移到目标数据库RDS。 点击下方链接,领取免费ECS&RDS资源,30分钟完成数据库上云实战!https://developer.aliyun.com/adc/scenario/51eefbd1894e42f6bb9acacadd3f9121?spm=a2c6h.13788135.J_3257954370.9.4ba85f24utseFl
相关文章
|
2月前
|
缓存 NoSQL 关系型数据库
亿级电商流量,高并发下Redis与MySQL的数据一致性如何保证
你们有多少人是被面试官问到过Redis和MySQL的数据一致性如何保证的? 你们是否考虑过在高并发场景下,Redis与MySQL的同步会有哪些问题?该如何解决? 本篇文章会带大家详细了解,让你知其然,知其所以然,吊打面试官。
356 0
亿级电商流量,高并发下Redis与MySQL的数据一致性如何保证
|
2月前
|
SQL 存储 关系型数据库
MySQL索引(二)索引优化方案有哪些
MySQL索引(二)索引优化方案有哪些
47 0
|
10天前
|
缓存 NoSQL 数据库
关于高并发下缓存失效的问题(本地锁 && 分布式锁 && Redission 详解)
关于高并发下缓存失效的问题(本地锁 && 分布式锁 && Redission 详解)
26 0
|
20天前
|
存储 Java 应用服务中间件
【分布式技术专题】「架构实践于案例分析」盘点互联网应用服务中常用分布式事务(刚性事务和柔性事务)的原理和方案
【分布式技术专题】「架构实践于案例分析」盘点互联网应用服务中常用分布式事务(刚性事务和柔性事务)的原理和方案
42 0
|
20天前
|
canal 消息中间件 关系型数据库
【分布式技术专题】「分布式技术架构」MySQL数据同步到Elasticsearch之N种方案解析,实现高效数据同步
【分布式技术专题】「分布式技术架构」MySQL数据同步到Elasticsearch之N种方案解析,实现高效数据同步
66 0
|
21天前
|
SQL 关系型数据库 MySQL
【MySQL技术之旅】(7)总结和盘点优化方案系列之常用SQL的优化
【MySQL技术之旅】(7)总结和盘点优化方案系列之常用SQL的优化
36 1
|
29天前
|
存储 缓存 运维
LAMP架构调优(五)——网页缓存设置
LAMP架构调优(五)——网页缓存设置
10 1
|
1月前
|
Web App开发 监控 应用服务中间件
全新架构!日志服务 SLS 自研免登录方案发布
全新架构!日志服务 SLS 自研免登录方案发布
87432 7
|
1月前
|
存储 NoSQL Redis
陌陌技术分享:陌陌IM在后端KV缓存架构上的技术实践
在本文中,陌陌数据库负责人冀浩东将聚焦探讨陌陌的 KV 系统架构选型思路,深入解析如何进行此类系统的甄选决策,同时进一步分享陌陌团队在采用 OceanBase(OBKV)过程中所经历的探索与实践经验。
31 0
|
1月前
|
缓存 关系型数据库 MySQL
史上最全MySQL 大表优化方案(长文)
史上最全MySQL 大表优化方案(长文)
331 0