CVPR 202:擅长处理复杂场景和语言表达,清华&博世提出全新实例分割网络架构MagNet

简介: 【5月更文挑战第10天】在CVPR 2024会议上,清华大学与博世团队推出MagNet,一种针对复杂场景和语言表达的实例分割网络。MagNet通过Mask Grounding辅助任务强化视觉-语言对应,缩小模态差距,并结合跨模态对齐损失与模块,提升RIS任务的准确性。在RefCOCO、RefCOCO+和G-Ref基准上取得显著优势,但对罕见表达和复杂场景的处理仍有待优化。[论文链接](https://arxiv.org/abs/2312.12198)

CVPR 2024即将到来,清华大学与博世公司的研究团队在计算机视觉领域取得了一项令人瞩目的成果。他们在论文《Mask Grounding for Referring Image Segmentation》中提出了一种全新的实例分割网络架构——MagNet(Mask-grounded Network)。

实例分割是计算机视觉中的一项重要任务,旨在将图像中的每个对象实例进行精确的定位和分割。而其中,Referring Image Segmentation(RIS)是一个更具挑战性的任务,它要求算法能够根据自由形式的语言表达来对图像中的对象进行分割。

近年来,尽管RIS领域取得了显著的进展,但大多数最先进的方法仍然在像素和单词级别的语言-图像模态差距上存在问题。这些方法通常依赖句子级别的语言特征来进行语言-图像对齐,并且缺乏对细粒度视觉定位的明确训练监督。因此,它们在视觉特征和语言特征之间的对象级别对应关系上表现较弱。

为了解决这个问题,研究团队提出了一种名为Mask Grounding的辅助任务,该任务通过明确地教导模型学习被遮盖的文本令牌与匹配的视觉对象之间的细粒度对应关系,从而显著改善了语言特征中的视觉定位。Mask Grounding可以直接应用于先前的RIS方法,并一致地带来改进。

此外,为了全面解决模态差距问题,研究团队还设计了一个跨模态对齐损失和一个相应的对齐模块。这些添加的功能与Mask Grounding协同工作,以实现更准确的视觉-语言对齐。

通过这些技术的综合应用,研究团队提出了MagNet架构,该架构在三个关键基准(RefCOCO、RefCOCO+和G-Ref)上显著优于先前的方法,证明了该方法在解决当前RIS算法的局限性方面的有效性。

MagNet架构的提出为解决复杂场景和语言表达的实例分割问题提供了一种全新的思路。它通过Mask Grounding和跨模态对齐等技术,有效地缩小了语言-图像模态差距,提高了算法对复杂表达和多对象关系的理解能力。

然而,尽管MagNet在实验中表现出色,但仍有一些问题值得进一步研究。首先,尽管Mask Grounding能够改善视觉定位,但它可能对一些罕见或模棱两可的表达不太有效。其次,尽管MagNet在三个关键基准上取得了显著的性能提升,但在其他更复杂的场景或数据集上的表现仍有待验证。

论文地址:https://arxiv.org/abs/2312.12198

目录
相关文章
|
15天前
|
消息中间件 存储 大数据
阿里云消息队列 Kafka 架构及典型应用场景
阿里云消息队列 Kafka 是一款基于 Apache Kafka 的分布式消息中间件,支持消息发布与订阅模型,满足微服务解耦、大数据处理及实时流数据分析需求。其通过存算分离架构优化成本与性能,提供基础版、标准版和专业版三种 Serverless 版本,分别适用于不同业务场景,最高 SLA 达 99.99%。阿里云 Kafka 还具备弹性扩容、多可用区部署、冷热数据缓存隔离等特性,并支持与 Flink、MaxCompute 等生态工具无缝集成,广泛应用于用户行为分析、数据入库等场景,显著提升数据处理效率与实时性。
|
3月前
|
存储 弹性计算 运维
阿里云通用算力型U1实例怎么样?u1实例技术架构、场景适配与优惠价格参考
阿里云服务器ECS 通用算力型u1实例2核4G,5M固定带宽,80G ESSD Entry盘,企业用户专享优惠价格199元1年,很多用户关心这个款云服务器怎么样?阿里云通用算力型U1实例自推出以来,凭借独特的"均衡算力+智能调度"设计理念,在IaaS市场开辟出差异化的竞争赛道。本文将通过技术架构解析、典型场景适配分析、全生命周期成本测算三个维度,全面解构这款热门云服务器实例的核心价值,以供参考和选择。
|
3月前
|
安全 自动驾驶 物联网
新四化驱动,如何构建智能汽车的“全场景”可进化互联网络?
在智能化、电动化、网联化、共享化的时代浪潮中,汽车正从单纯的 “机械产品” 进化为先进的 “移动智能终端”。在软件定义汽车(SDV)的崭新时代,每一次 OTA 升级的顺利完成、每一秒自动驾驶的精准决策、每一帧车载娱乐交互的流畅呈现,都离不开一张实时响应、全域覆盖、安全可靠的广域网络。
|
3月前
|
存储 开发框架 缓存
YashanDB实例架构
YashanDB实例架构
|
4月前
|
机器学习/深度学习 自然语言处理 计算机视觉
RT-DETR改进策略【Backbone/主干网络】| CVPR 2024 替换骨干网络为 RMT,增强空间信息的感知能力
RT-DETR改进策略【Backbone/主干网络】| CVPR 2024 替换骨干网络为 RMT,增强空间信息的感知能力
192 13
RT-DETR改进策略【Backbone/主干网络】| CVPR 2024 替换骨干网络为 RMT,增强空间信息的感知能力
|
4月前
|
机器学习/深度学习 计算机视觉
RT-DETR改进策略【Backbone/主干网络】| 替换骨干网络为2023-CVPR LSKNet (附网络详解和完整配置步骤)
RT-DETR改进策略【Backbone/主干网络】| 替换骨干网络为2023-CVPR LSKNet (附网络详解和完整配置步骤)
125 13
RT-DETR改进策略【Backbone/主干网络】| 替换骨干网络为2023-CVPR LSKNet (附网络详解和完整配置步骤)
|
4月前
|
机器学习/深度学习 计算机视觉 网络架构
RT-DETR改进策略【Backbone/主干网络】| CVPR 2024替换骨干网络为 UniRepLKNet,解决大核 ConvNets 难题
RT-DETR改进策略【Backbone/主干网络】| CVPR 2024替换骨干网络为 UniRepLKNet,解决大核 ConvNets 难题
340 12
RT-DETR改进策略【Backbone/主干网络】| CVPR 2024替换骨干网络为 UniRepLKNet,解决大核 ConvNets 难题
|
4月前
|
机器学习/深度学习 编解码 数据可视化
RT-DETR改进策略【Backbone/主干网络】| 替换骨干网络为2023-CVPR ConvNeXt V2 (附网络详解和完整配置步骤)
RT-DETR改进策略【Backbone/主干网络】| 替换骨干网络为2023-CVPR ConvNeXt V2 (附网络详解和完整配置步骤)
245 11
RT-DETR改进策略【Backbone/主干网络】| 替换骨干网络为2023-CVPR ConvNeXt V2 (附网络详解和完整配置步骤)
|
3月前
|
监控 算法 安全
公司电脑网络监控场景下 Python 广度优先搜索算法的深度剖析
在数字化办公时代,公司电脑网络监控至关重要。广度优先搜索(BFS)算法在构建网络拓扑、检测安全威胁和优化资源分配方面发挥重要作用。通过Python代码示例展示其应用流程,助力企业提升网络安全与效率。未来,更多创新算法将融入该领域,保障企业数字化发展。
95 10
|
4月前
|
机器学习/深度学习 计算机视觉 网络架构
YOLOv11改进策略【Backbone/主干网络】| CVPR 2024替换骨干网络为 UniRepLKNet,解决大核 ConvNets 难题
YOLOv11改进策略【Backbone/主干网络】| CVPR 2024替换骨干网络为 UniRepLKNet,解决大核 ConvNets 难题
405 0
YOLOv11改进策略【Backbone/主干网络】| CVPR 2024替换骨干网络为 UniRepLKNet,解决大核 ConvNets 难题

热门文章

最新文章