流计算风云再起 - PostgreSQL携PipelineDB力挺IoT(物联网)

简介: 标签 PostgreSQL , pipelinedb , 流计算 , patch , bug , libcheck , zeromq , kafka , kinesis , IoT , 物联网 背景 pipelinedb是基于PostgreSQL的一个流式计算数据库,纯C代码,效率极高(32c机器,单机日处理流水达到了250.56亿条)。同时它具备了PostgreSQL强大的功能基础,正

标签

PostgreSQL , pipelinedb , 流计算 , patch , bug , libcheck , zeromq , kafka , kinesis , IoT , 物联网


背景

pipelinedb是基于PostgreSQL的一个流式计算数据库,纯C代码,效率极高(32c机器,单机日处理流水达到了250.56亿条)。同时它具备了PostgreSQL强大的功能基础,正在掀起一场流计算数据库制霸的腥风血雨。

在物联网(IoT)有非常广泛的应用场景,越来越多的用户开始从其他的流计算平台迁移到pipelineDB。

pipelinedb的用法非常简单,首先定义stream(流),然后基于stream定义对应的transform(事件触发模块),以及Continuous Views(实时统计模块)

数据往流里面插入,transform和Continuous Views就在后面实时的对流里的数据进行处理,对开发人员来说很友好,很高效。

值得庆祝的还有,所有的接口都是SQL操作,非常的方便,大大降低了开发难度。

pic

pipelinedb基本概念

1. 什么是流
流是基础,Continuous Views和transform则是基于流中的数据进行处理的手段。

对于同一份数据,只需要定义一个流,写入一份即可。

如果对同一份数据有多个维度的统计,可以写在一条SQL完成的(如同一维度的运算或者可以支持窗口的多维度运算),只需定义一个Continuous Views或transform。如果不能在同一条SQL中完成计算,则定义多个Continuous Views或transform即可。

如果有多份数据来源(例如设计时就已经区分了不同的表)时,定义不同的流即可;

2. 什么是流视图?

流视图,其实就是定义统计分析的QUERY, 例如select id, count(*), avg(x), ... from stream_1 group by ...; 就属于一个流视图。

定义好之后,数据插入流(stream_1),这个流视图就会不断增量的进行统计,你只要查询这个流视图,就可以查看到实时的统计结果。

数据库中存储的是实时统计的结果(实际上是在内存中进行增量合并的,增量的方式持久化)。

3. 什么是Transforms

与流视图不同的是,transform是用来触发事件的,所以它可以不保留数据,但是可以设定条件,当记录满足条件时,就触发事件。

例如监视传感器的值,当值的范围超出时,触发报警(如通过REST接口发给指定的server),或者将报警记录下来(通过触发器函数)。

4. pipelinedb继承了PostgreSQL很好的扩展性,例如支持了概率统计相关的功能,例如HLL等。用起来也非常的爽,例如统计网站的UV,或者红绿灯通过的汽车编号唯一值车流,通过手机信号统计基站辐射方圆多少公里的按时UV等。

Bloom Filter    
Count-Min Sketch    
Filtered-Space Saving Top-K    
HyperLogLog    
T-Digest    

5. Sliding Windows

因为很多场景的数据有时效,或者有时间窗口的概念,所以pipelinedb提供了窗口分片的接口,允许用户对数据的时效进行定义。

例如仅仅统计最近一分钟的时间窗口内的统计数据。

比如热力图,展示最近一分钟的热度,对于旧的数据不关心,就可以适应SW进行定义,从而保留的数据少,对机器的要求低,效率还高。

6. 流视图 支持JOIN,支持JOIN,支持JOIN,重要的事情说三遍。

流 JOIN 流(未来版本支持,目前可以通过transform间接实现)

流 JOIN TABLE(已支持)

欲了解pipelineDB详情请参考

http://docs.pipelinedb.com/

如果你还想了解一下PostgreSQL请参考

《PostgreSQL 前世今生》

pipelinedb在github上面可以下载。

https://github.com/pipelinedb/pipelinedb/releases

pipelinedb适用场景

凡是需要流式处理的场景,pipelinedb都是适用的,例如 :

1. 交通

流式处理交通传感器(如路感、红绿灯)上报的数据,实时的反应交通情况如车流(流视图中完成)。动态的触发事件响应(transform中完成)如交通事故。

2. 水文监测

流式监测传感器的数据,水质的变化,动态的触发事件响应(transform中完成)如水质受到污染。

3. 车联网

结合PostGIS,实现对汽车的位置实时跟踪和轨迹合并,动态的绘制大盘数据(分时,车辆区域分布)。

4. 物流动态

动态的跟踪包裹在每个环节的数据,聚合结果,在查询时不需要再从大量的数据中筛选多条(降低离散扫描)。

5. 金融数据实时处理

例如用户设定了某个股票达到多少时,进行买入或卖出的操作,使用transform的事件处理机制,可以快速的进行买卖。

又比如,实时的对股票的指标数据进行一些数学模型的运算,实时输出运算结果,绘制大盘数据。

6. 公安刑侦

例如在已知可疑车辆的车牌时,在流式处理天眼拍摄并实时上传的车牌信息时,通过transform设置的规则,遇到可疑车牌时,触发事件,快速的知道可疑车辆的实时行踪。

7. app埋点(feed)数据实时分析

很多APP都会设置埋点,方便对用户的行为,或者业务处理逻辑进行跟踪,如果访问量大,数据量可能非常庞大,在没有流式处理前,我们可能需要将数据收集到一个大型的数据仓库,进行离线分析。

但是有些时候,离线分析可能是不够用的,比如要根据用户的实时行为,或者大盘的实时行为,对用户做出一些动态的推荐,或者营销,那么就要用到流式实时处理了。

8. 网络协议层流量分析

比如对办公网络、运营商网关、某些服务端的流量分析。

pic

还有诸多场景等你来发掘。

pic

pipelinedb文档中提到的一些例子

实时监测每个URL的日访问UV
CREATE CONTINUOUS VIEW uniques AS
SELECT date_trunc('day', arrival_timestamp) AS day,
  referrer, COUNT(DISTINCT user_id)
FROM users_stream GROUP BY day, referrer;

实时监测两个列的线性相关性,比如湿度与温度,大盘与贵州茅台,路口A与路口B的车流,某商场的人流量与销售额
CREATE CONTINUOUS VIEW lreg AS
SELECT date_trunc('minute', arrival_timestamp) AS minute,
  regr_slope(y, x) AS mx,
  regr_intercept(y, x) AS b
FROM datapoints_stream GROUP BY minute;

最近5分钟的计数
CREATE CONTINUOUS VIEW imps AS
SELECT COUNT(*) FROM imps_stream
WHERE (arrival_timestamp > clock_timestamp() - interval '5 minutes');

网站的访问品质,99th的用户访问延时, 95th的用户访问延时,.....
CREATE CONTINUOUS VIEW latency AS
SELECT percentile_cont(array[90, 95, 99]) WITHIN GROUP (ORDER BY latency)
FROM latency_stream;

西斯科方圆1000公里有多少车子
-- PipelineDB ships natively with geospatial support
CREATE CONTINUOUS VIEW sf_proximity_count AS
SELECT COUNT(DISTINCT sensor_id)
FROM geo_stream WHERE ST_DWithin(

  -- Approximate SF coordinates
  ST_GeographyFromText('SRID=4326;POINT(37 -122)'), sensor_coords, 1000);

pipeline的优势

这是个拼爹的年代,pipelinedb有个很牛逼的爸爸PostgreSQL,出身伯克利大学,有扎实的理论基础,历经了43年的进化,在功能、性能、扩展能力、理论基础等方面无需质疑一直处于领先的位置。

搞流式计算,计算是灵魂,算法和支持的功能排在很重要的位置。

pic

PostgreSQL的强大之处在于统计维度极其丰富,数据类型也极其丰富。

build-in 数据类型参考

https://www.postgresql.org/docs/9.6/static/datatype.html

build-in 聚合,窗口,数学函数请参考

https://www.postgresql.org/docs/9.6/static/functions.html

同时还支持扩展,常见的例如

MADLib

PostGIS

路径规划

wavelet

基因

化学

还有好多好多(为什么这么多?原因是PostgreSQL的BSD-Like许可,致使了PG的生态圈真的很大很大,深入各行各业)。

你能想到的和想不到的几乎都可以在pipelinedb 中进行流式处理,大大提高开发效率。

快速部署pipelinedb

OS最佳部署

《PostgreSQL on Linux 最佳部署手册》

部署依赖

安装 zeromq

http://zeromq.org/intro:get-the-software

wget https://github.com/zeromq/libzmq/releases/download/v4.2.0/zeromq-4.2.0.tar.gz    

tar -zxvf zeromq-4.2.0.tar.gz    

cd zeromq-4.2.0    

./configure    
make    
make install    


vi /etc/ld.so.conf    
/usr/local/lib    

ldconfig    

rhel6需要更新libcheck

删除老版本的check

yum remove check    

安装 check

http://check.sourceforge.net/

https://libcheck.github.io/check/web/install.html#linuxsource

https://github.com/libcheck/check/releases

wget http://downloads.sourceforge.net/project/check/check/0.10.0/check-0.10.0.tar.gz?r=&ts=1482216800&use_mirror=ncu    

tar -zxvf check-0.10.0.tar.gz    

cd check-0.10.0    

./configure    
make     
make install    

下载pipelinedb

wget https://github.com/pipelinedb/pipelinedb/archive/0.9.6.tar.gz    

tar -zxvf 0.9.6.tar.gz    

cd pipelinedb-0.9.6    

pipelinedb for rhel 6 or CentOS 6有几个BUG需要修复一下

rhel6需要调整check.h

vi src/test/unit/test_hll.c     
vi src/test/unit/test_tdigest.c     
vi src/test/unit/test_bloom.c     
vi src/test/unit/test_cmsketch.c     
vi src/test/unit/test_fss.c     

添加    
#include "check.h"    

rhel6需要修复libzmq.a路径错误

libzmq.a的路径修正

vi src/Makefile.global.in    

LIBS := -lpthread /usr/local/lib/libzmq.a -lstdc++ $(LIBS)    

修复test_decoding错误

cd contrib/test_decoding    

mv specs test    

cd ../../    

编译pipelinedb

export C_INCLUDE_PATH=/usr/local/include:C_INCLUDE_PATH    
export LIBRARY_PATH=/usr/local/lib:$LIBRARY_PATH    

export USE_NAMED_POSIX_SEMAPHORES=1    

LIBS=-lpthread CC="/home/digoal/gcc6.2.0/bin/gcc" CFLAGS="-O3 -flto" ./configure --prefix=/home/digoal/pgsql_pipe    

make world -j 32    

make install-world    

初始化集群

配置环境变量

vi env_pipe.sh     

export PS1="$USER@`/bin/hostname -s`-> "    
export PGPORT=$1    
export PGDATA=/$2/digoal/pg_root$PGPORT    
export LANG=en_US.utf8    
export PGHOME=/home/digoal/pgsql_pipe    
export LD_LIBRARY_PATH=/home/digoal/gcc6.2.0/lib:/home/digoal/gcc6.2.0/lib64:/home/digoal/python2.7.12/lib:$PGHOME/lib:/lib64:/usr/lib64:/usr/local/lib64:/lib:/usr/lib:/usr/local/lib:$LD_LIBRARY_PATH    
export PATH=/home/digoal/cmake3.6.3/bin:/home/digoal/gcc6.2.0/bin:/home/digoal/python2.7.12/bin:/home/digoal/cmake3.6.3/bin:$PGHOME/bin:$PATH:.    
export DATE=`date +"%Y%m%d%H%M"`    
export MANPATH=$PGHOME/share/man:$MANPATH    
export PGHOST=$PGDATA    
export PGUSER=postgres    
export PGDATABASE=pipeline    
alias rm='rm -i'    
alias ll='ls -lh'    
unalias vi    

假设端口为1922,目录放在/u01中

. ./env_pipe.sh 1922 u01    

初始化集群

pipeline-init -D $PGDATA -U postgres -E SQL_ASCII --locale=C    

修改配置

cd $PGDATA    

vi pipelinedb.conf    

listen_addresses = '0.0.0.0'    
port = 1922      
max_connections = 2000    
superuser_reserved_connections = 13    
unix_socket_directories = '.'    
shared_buffers = 64GB    
maintenance_work_mem = 1GB    
dynamic_shared_memory_type = posix    
vacuum_cost_delay = 0    
bgwriter_delay = 10ms    
bgwriter_lru_maxpages = 1000    
bgwriter_lru_multiplier = 5.0    
synchronous_commit = off    
full_page_writes = off    
checkpoint_timeout = 35min    
checkpoint_completion_target = 0.1    
random_page_cost = 1.0    
effective_cache_size = 400GB    
log_destination = 'csvlog'    
logging_collector = on    
log_truncate_on_rotation = on    
log_checkpoints = on    
log_connections = on    
log_disconnections = on    
log_error_verbosity = verbose       
log_timezone = 'PRC'    
autovacuum = on    
log_autovacuum_min_duration = 0    
datestyle = 'iso, mdy'    
timezone = 'PRC'    
lc_messages = 'C'    
lc_monetary = 'C'    
lc_numeric = 'C'    
lc_time = 'C'    
default_text_search_config = 'pg_catalog.english'    
continuous_query_combiner_synchronous_commit = off    
continuous_query_combiner_work_mem = 2GB    
continuous_view_fillfactor = 50    
continuous_query_max_wait = 10    
continuous_query_commit_interval = 500    
continuous_query_batch_size = 500000    
continuous_query_num_combiners = 12    
continuous_query_num_workers = 8    

pipelinedb新增的配置

#------------------------------------------------------------------------------    
# PIPELINEDB OPTIONS    
#------------------------------------------------------------------------------    

# synchronization level for combiner commits; off, local, remote_write, or on    
continuous_query_combiner_synchronous_commit = off    

# maximum amount of memory to use for combiner query executions    
continuous_query_combiner_work_mem = 512MB    

# the default fillfactor to use for continuous views    
continuous_view_fillfactor = 50    

# the time in milliseconds a continuous query process will wait for a batch    
# to accumulate    
continuous_query_max_wait = 10    

# time in milliseconds after which a combiner process will commit state to    
# disk    
continuous_query_commit_interval = 50    

# the maximum number of events to accumulate before executing a continuous query    
# plan on them    
continuous_query_batch_size = 50000    

# the number of parallel continuous query combiner processes to use for    
# each database    
continuous_query_num_combiners = 2    

# the number of parallel continuous query worker processes to use for    
# each database    
continuous_query_num_workers = 2    

# allow direct changes to be made to materialization tables?    
#continuous_query_materialization_table_updatable = off    

# synchronization level for stream inserts    
#stream_insert_level = sync_read    

# continuous views that should be affected when writing to streams.    
# it is string with comma separated values for continuous view names.    
#stream_targets = ''    

# the default step factor for sliding window continuous queries (as a percentage    
# of the total window size)    
#sliding_window_step_factor = 5    

# allow continuous queries?    
#continuous_queries_enabled = on    

# allow anonymous statistics collection and version checks?    
#anonymous_update_checks = on    

启动pipelinedb

pipeline-ctl start    

连接方法

如何连接PostgreSQL,就如何连接pipelinedb,它们是全兼容的。

psql    
psql (9.5.3)    
Type "help" for help.    

pipeline=# \dt    
No relations found.    
pipeline=# \l    
                             List of databases    
   Name    |  Owner   | Encoding  | Collate | Ctype |   Access privileges       
-----------+----------+-----------+---------+-------+-----------------------    
 pipeline  | postgres | SQL_ASCII | C       | C     |     
 template0 | postgres | SQL_ASCII | C       | C     | =c/postgres          +    
           |          |           |         |       | postgres=CTc/postgres    
 template1 | postgres | SQL_ASCII | C       | C     | =c/postgres          +    
           |          |           |         |       | postgres=CTc/postgres    
(3 rows)    

pipeline=#    

测试

创建流结构

id为KEY, val存储值,统计时按ID聚合

CREATE STREAM s1 (id int, val int);    

创建流式视图

流视图统计count, avg, min, max, sum几个常见维度

CREATE CONTINUOUS VIEW cv1 AS    
SELECT id,count(*),avg(val),min(val),max(val),sum(val)    
FROM s1 GROUP BY id;    

PostgreSQL的强大之处在于统计维度极其丰富,数据类型也极其丰富。

build-in 数据类型参考

https://www.postgresql.org/docs/9.6/static/datatype.html

build-in 聚合,窗口,数学函数请参考

https://www.postgresql.org/docs/9.6/static/functions.html

同时还支持扩展,常见的例如 PostGIS, wavelet, 基因,化学,图类型,等等。

你能想到的和想不到的都可以在pipelinedb 中进行流式处理,大大提高开发效率。

激活流计算

activate ;    

插入压测

100万个随机group,插入的值为500万内的随机值

vi test.sql    

\setrandom id 1 1000000    
\setrandom val 1 5000000    
insert into s1(id,val) values (:id, :val);    

使用1000个连接,开始压测,每秒约处理24万流水

pgbench -M prepared -n -r -P 1 -f ./test.sql -c 1000 -j 1000 -T 100    

...    
progress: 2.0 s, 243282.2 tps, lat 4.116 ms stddev 5.182    
progress: 3.0 s, 237077.6 tps, lat 4.211 ms stddev 5.794    
progress: 4.0 s, 252376.8 tps, lat 3.967 ms stddev 4.998    
...    

如果主机有很多块硬盘,并且CPU很强时,可以在一台主机中部署2个或多个pipelinedb实例,进行分流。

比如我在32Core的机器上,部署2个pipelinedb实例,可以达到29万/s的流处理能力,一天能处理 250.56亿 流水。

小伙伴们都惊呆了。

250.56亿,使用jstrom框架的话,估计要几十倍甚至上百倍于pipelinedb的硬件投入才能达到同样效果。

pipelinedb集群化部署

虽然pipelinedb的性能很强(前面测的32C机器约250.56亿/天的流水处理能力),但是单机总会有瓶颈,所以我们还是需要考虑集群化的部署。

pic

写入操作,如果不需要特定的分片规则,使用haproxy分发就可以了。如果需要加入分片规则,可以使用plproxy。

查询聚合,需要使用plproxy,非常简单,写个动态函数即可。

plproxy 相关文档介绍

《使用Plproxy设计PostgreSQL分布式数据库》

《A Smart PostgreSQL extension plproxy 2.2 practices》

《PostgreSQL 最佳实践 - 水平分库(基于plproxy)》

pipelinedb 文档结构

http://docs.pipelinedb.com/

从文档目录,可以快速了解pipelinedb可以干什么,可以和什么结合,处理那些场景的问题?

1. 介绍

What PipelineDB is    
What PipelineDB is not    

2. Continuous Views

定义流视图,其实就是定义 统计分析的QUERY, 例如select id, count(*), avg(x), ... from table group by ...;

定义好之后,数据插入table,这个流视图就会不断增量的进行统计,你只要查询这个流视图,就可以查看到实时的统计结果。

数据库中存储的是实时统计的结果(实际上是在内存中进行增量合并的,增量的方式持久化)。

CREATE CONTINUOUS VIEW    
DROP CONTINUOUS VIEW    
TRUNCATE CONTINUOUS VIEW    
Viewing Continuous Views    
Data Retrieval    
Time-to-Live (TTL) Expiration    
Activation and Deactivation    
Examples    

3. Continuous Transforms

与流视图不同的是,transform是用来触发事件的,所以它可以不保留数据,但是可以设定条件,当记录满足条件时,就触发事件。

例如监视传感器的值,当值的范围超出时,触发报警(如通过REST接口发给指定的server),或者将报警记录下来(通过触发器函数)。

CREATE CONTINUOUS TRANSFORM    
DROP CONTINUOUS TRANSFORM    
Viewing Continuous Transforms    
Built-in Transform Triggers    
Creating Your Own Trigger    

4. Streams

流视图和transform都是基于流的,所以流是基础。

我们首先需要定义流,往流里面写数据,然后在流动的数据中使用流视图或者transform对数据进行实时处理。

Writing To Streams    
Output Streams    
stream_targets    
Arrival Ordering    
Event Expiration    

5. Built-in Functionality

内置的函数

General    
Aggregates    
PipelineDB-specific Types    
PipelineDB-specific Functions    
Miscellaneous Functions    

6. Continuous Aggregates

聚合的介绍,通常流处理分两类,即前面讲的

流视图(通常是实时聚合的结果),比如按分钟实时的对红绿灯的车流统计数据绘图,或者按分钟对股票的实时数据进行绘图。

transform(事件处理机制),比如监控水质,传感器的值超出某个范围时,记录日志,并同时触发告警(发送给server)。

PipelineDB-specific Aggregates    
Combine    
CREATE AGGREGATE    
General Aggregates    
Statistical Aggregates    
Ordered-set Aggregates    
Hypothetical-set Aggregates    
Unsupported Aggregates    

7. Clients

几种常见的客户端用法,实际上支持PostgreSQL的都支持pipelinedb,他们的连接协议是一致的。

Python    
Ruby    
Java    

8. Probabilistic Data Structures & Algorithms

概率统计相关的功能,例如HLL等。用起来也非常的爽,例如统计网站的UV,或者红绿灯通过的汽车编号唯一值车流,通过手机信号统计基站辐射方圆多少公里的按时UV等。

Bloom Filter    
Count-Min Sketch    
Filtered-Space Saving Top-K    
HyperLogLog    
T-Digest    

9. Sliding Windows

因为很多场景的数据有时效,或者有时间窗口的概念,所以pipelinedb提供了窗口分片的接口,允许用户对数据的时效进行定义。

例如仅仅统计最近一分钟的时间窗口内的统计数据。

比如热力图,展示最近一分钟的热度,对于旧的数据不关心,就可以适应SW进行定义,从而保留的数据少,对机器的要求低,效率还高。

Examples    
Sliding Aggregates    
Temporal Invalidation    
Multiple Windows    
step_factor    

10. Continuous JOINs

流视图 支持JOIN,支持JOIN,支持JOIN,重要的事情说三遍。

流 JOIN 流(未来版本支持,目前可以通过transform间接实现)

流 JOIN TABLE(已支持)

Stream-table JOINs    
Supported Join Types    
Examples    
Stream-stream JOINs    

11. Integrations

pipelinedb继承了PostgreSQL的高扩展性,所以支持kafka, aws kinesis也是易如反掌的,可以适应更多的场景。

pic

https://aws.amazon.com/cn/kinesis/streams/

Apache Kafka    
Amazon Kinesis    

12. Statistics

统计信息,对于DBA有很大的帮助

pipeline_proc_stats    
pipeline_query_stats    
pipeline_stream_stats    
pipeline_stats    

13. Configuration

参考

https://yq.aliyun.com/articles/166

相关实践学习
使用PolarDB和ECS搭建门户网站
本场景主要介绍基于PolarDB和ECS实现搭建门户网站。
阿里云数据库产品家族及特性
阿里云智能数据库产品团队一直致力于不断健全产品体系,提升产品性能,打磨产品功能,从而帮助客户实现更加极致的弹性能力、具备更强的扩展能力、并利用云设施进一步降低企业成本。以云原生+分布式为核心技术抓手,打造以自研的在线事务型(OLTP)数据库Polar DB和在线分析型(OLAP)数据库Analytic DB为代表的新一代企业级云原生数据库产品体系, 结合NoSQL数据库、数据库生态工具、云原生智能化数据库管控平台,为阿里巴巴经济体以及各个行业的企业客户和开发者提供从公共云到混合云再到私有云的完整解决方案,提供基于云基础设施进行数据从处理、到存储、再到计算与分析的一体化解决方案。本节课带你了解阿里云数据库产品家族及特性。
目录
相关文章
|
5月前
|
物联网 数据管理 Apache
拥抱IoT浪潮,Apache IoTDB如何成为你的智能数据守护者?解锁物联网新纪元的数据管理秘籍!
【8月更文挑战第22天】随着物联网技术的发展,数据量激增对数据库提出新挑战。Apache IoTDB凭借其面向时间序列数据的设计,在IoT领域脱颖而出。相较于传统数据库,IoTDB采用树形数据模型高效管理实时数据,具备轻量级结构与高并发能力,并集成Hadoop/Spark支持复杂分析。在智能城市等场景下,IoTDB能处理如交通流量等数据,为决策提供支持。IoTDB还提供InfluxDB协议适配器简化迁移过程,并支持细致的权限管理确保数据安全。综上所述,IoTDB在IoT数据管理中展现出巨大潜力与竞争力。
127 1
|
2月前
|
安全 物联网 物联网安全
揭秘区块链技术在物联网(IoT)安全中的革新应用
揭秘区块链技术在物联网(IoT)安全中的革新应用
|
2月前
|
传感器 存储 物联网
在物联网(IoT)快速发展的今天,C语言作为物联网开发中的关键工具,以其高效、灵活、可移植的特点
在物联网(IoT)快速发展的今天,C语言作为物联网开发中的关键工具,以其高效、灵活、可移植的特点,广泛应用于嵌入式系统开发、通信协议实现及后端服务构建等领域,成为推动物联网技术进步的重要力量。
49 1
|
2月前
|
存储 安全 物联网
C# 在物联网 (IoT) 应用中的应用
本文介绍了C#在物联网(IoT)应用中的应用,涵盖基础概念、优势、常见问题及其解决方法。重点讨论了网络通信、数据处理和安全问题,并提供了相应的代码示例,旨在帮助开发者更好地利用C#进行IoT开发。
73 3
|
2月前
|
安全 物联网 网络安全
智能设备的安全隐患:物联网(IoT)安全指南
智能设备的安全隐患:物联网(IoT)安全指南
114 12
|
2月前
|
传感器 监控 安全
物联网(IoT):定义、影响与未来
物联网(IoT):定义、影响与未来
104 3
|
2月前
|
存储 JSON 运维
智能物联网平台:Azure IoT Hub在设备管理中的实践
【10月更文挑战第26天】随着物联网技术的发展,Azure IoT Hub成为企业管理和连接数百万台设备的强大平台。本文介绍Azure IoT Hub的设备管理功能,包括设备注册、设备孪生、直接方法和监控诊断,并通过示例代码展示其应用。
77 4
|
2月前
|
SQL 监控 物联网
ClickHouse在物联网(IoT)中的应用:实时监控与分析
【10月更文挑战第27天】随着物联网(IoT)技术的快速发展,越来越多的设备被连接到互联网上,产生了海量的数据。这些数据不仅包含了设备的状态信息,还包括用户的使用习惯、环境参数等。如何高效地处理和分析这些数据,成为了一个重要的挑战。作为一位数据工程师,我在一个物联网项目中深入使用了ClickHouse,以下是我的经验和思考。
117 0
|
3月前
|
人工智能 安全 物联网
|
4月前
|
存储 物联网 关系型数据库
PolarDB在物联网(IoT)数据存储中的应用探索
【9月更文挑战第6天】随着物联网技术的发展,海量设备数据对实时存储和处理提出了更高要求。传统数据库在扩展性、性能及实时性方面面临挑战。阿里云推出的PolarDB具备高性能、高可靠及高扩展性特点,能有效应对这些挑战。它采用分布式存储架构,支持多副本写入优化、并行查询等技术,确保数据实时写入与查询;多副本存储架构和数据持久化存储机制保证了数据安全;支持动态调整数据库规模,适应设备和数据增长。通过API或SDK接入IoT设备,实现数据实时写入、分布式存储与高效查询,展现出在IoT数据存储领域的巨大潜力。
95 1

热门文章

最新文章

相关产品

  • 物联网平台