开发者社区> 技术小能手> 正文
阿里云
为了无法计算的价值
打开APP
阿里云APP内打开

OpenCV神技——人脸检测、猫脸检测

简介:
+关注继续查看

简介

OpenCV是一个基于BSD许可(开源)发行的跨平台计算机视觉库,可以运行在Linux、Windows、Android和Mac OS操作系统上。它轻量级而且高效——由一系列 C 函数和少量 C++ 类构成,同时提供了Python、Ruby、MATLAB等语言的接口,实现了图像处理和计算机视觉方面的很多通用算法。

OpenCV的官方网址为:https://opencv.org/, 其Github网址为:https://github.com/opencv 。

本文将会介绍OpenCV在人脸检测等方面的应用,使用的语言为Python。

本文介绍的人脸检测使用OpenCV自带的Haar特征检测,训练好的模型的存放网址为:https://github.com/opencv/opencv/tree/master/data/haarcascades ,如下图:

9106afa3ae36554d9d5b89d3f0955ceabb20bbf3

笔者将会介绍其中的人脸检测(haarcascade_frontalface_default.xml)和猫脸检测(haarcascade_frontalface.xml)。

人脸检测

利用OpenCV的Python接口实现人脸检测的流程如下:

 ●  读取图片
 ●  将图片转换为灰度模式,便于人脸检测
 ●  利用Haar特征检测图片中的人脸
 ●  绘制人脸的矩形区域

 ●  显示人脸检测后的图片

示例的Python代码如下:


# -*- coding: utf-8 -*-

import cv2

import logging


# 设置日志

logging.basicConfig(level = logging.INFO, format='%(asctime)s - %(levelname)s: %(message)s')

logger = logging.getLogger(__name__)


# 待检测的图片路径

ImagePath = 'E://zhoujielun.jpg'


# 读取图片

logger.info('Reading image...')

image = cv2.imread(ImagePath)

# 把图片转换为灰度模式

gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)


# 探测图片中的人脸

logger.info('Detect faces...')

# 获取训练好的人脸的参数数据,进行人脸检测

face_cascade = cv2.CascadeClassifier(r'./haarcascade_frontalface_default.xml')

faces = face_cascade.detectMultiScale(gray,scaleFactor=1.15,minNeighbors=5,minSize=(3, 3))


search_info = "Find %d face."%len(faces) if len(faces) <= 1 else "Find %d faces."%len(faces)

logger.info(search_info)


# 绘制人脸的矩形区域(红色边框)

for (x, y, w, h) in faces:

cv2.rectangle(image, (x,y), (x+w,y+h), (0,0,255), 2)


# 显示图片

cv2.imshow('Find faces!', image)

cv2.waitKey(0)

输出结果如下:


2018-09-18 10:35:31,232 - INFO: Reading image...

2018-09-18 10:35:31,261 - INFO: Detect faces...

2018-09-18 10:35:32,122 - INFO: Find 1 face.

检测后的图片如下:

d4c87062ea97cfc3a59ca1299d1bc5eec727dbc4

可以看到人脸检测的效果还是不错的。

把代码中的图片换成《碟中谍6》里面的图片(笔者最近刚看完《碟中谍6》,强烈推荐),人脸检测的效果如下:

d585d8df9123002e190efaf41bfe89b7fe494f7e

猫脸检测

人脸检测、人脸识别是近来非常火的技术,那么,用来识别猫脸呢?只需要把之前代码中的模型文件换成haarcascade_frontalface.xml即可。完整的Python代码如下:


# -*- coding: utf-8 -*-

import cv2

import logging


# 设置日志

logging.basicConfig(level = logging.INFO, format='%(asctime)s - %(levelname)s: %(message)s')

logger = logging.getLogger(__name__)


# 待检测的图片路径

ImagePath = 'E://cat.jpg'


# 读取图片

logger.info('Reading image...')

image = cv2.imread(ImagePath)

# 把图片转换为灰度模式

gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)


# 探测图片中的人脸

logger.info('Detect faces...')

# 获取训练好的人脸的参数数据,进行人脸检测

face_cascade = cv2.CascadeClassifier(r'./haarcascade_frontalcatface.xml')

faces = face_cascade.detectMultiScale(gray,scaleFactor=1.15,minNeighbors=5,minSize=(3, 3))


search_info = "Find %d face."%len(faces) if len(faces) <= 1 else "Find %d faces."%len(faces)

logger.info(search_info)


# 绘制人脸的矩形区域(红色边框)

for (x, y, w, h) in faces:

cv2.rectangle(image, (x,y), (x+w,y+h), (0,0,255), 2)


# 显示图片

cv2.imshow('Find faces!', image)

cv2.waitKey(0)

输出的结果如下:


2018-09-18 10:43:00,564 - INFO: Reading image...

2018-09-18 10:43:00,585 - INFO: Detect faces...

2018-09-18 10:43:01,741 - INFO: Find 1 face.

猫脸检测后的效果如下:

222f1c56b8086164d89aa0464eebf797b433fb54

怎么样,是不是感觉萌萌的?

总结

本文主要介绍了OpenCV在人脸检测和猫脸检测方面的应用,并且给出了具体的Python代码。


原文发布时间为:2018-11-14
本文作者:jclian
本文来自云栖社区合作伙伴“Python中文社区”,了解相关信息可以关注“Python中文社区”。

版权声明:本文内容由阿里云实名注册用户自发贡献,版权归原作者所有,阿里云开发者社区不拥有其著作权,亦不承担相应法律责任。具体规则请查看《阿里云开发者社区用户服务协议》和《阿里云开发者社区知识产权保护指引》。如果您发现本社区中有涉嫌抄袭的内容,填写侵权投诉表单进行举报,一经查实,本社区将立刻删除涉嫌侵权内容。

相关文章
利用OpenCV的人脸检测给头像带上圣诞帽
我们来看下效果 原图:   效果:           原理其实很简单: 采用一张圣诞帽的png图像作为素材,           利用png图像背景是透明的,贴在背景图片上就是戴帽子的效果了。
1939 0
OpenCV 轮廓检测
读入彩色3通道图像,转换成灰度图像,再转换成二值图像,完后检测轮廓。   // cvtcolor.cpp : 定义控制台应用程序的入口点。 // #include "stdafx.h" #include #include #include #include #pragma comment(lib, "opencv_highgui2410d.
1129 0
OpenCV检测图像轮廓
轮廓只不过是图像中连接的曲线,或者图像中连通部分的边界,轮廓通常以图像中的边缘来计算,但是,边缘和轮廓的区别在于轮廓是闭合的,而边缘可以是任意的。
571 0
OpenCV使用霍夫变换检测图像中的形状
霍夫变换是一种被广泛使用的利用数学等式的参数形式在图像中检测形状的技术。 例如直线、椭圆、圆等形状。
818 0
Android使用OpenCV实现「人脸检测」和「人脸识别」
Android使用OpenCV实现「人脸检测」和「人脸识别」 DEMO OpenCV+JavaCV实现人脸识别 —————————-分割线——————————— 效果图 先...
2556 0
【OpenCv小白入门】人脸检测
本篇小结是关于OpenCv小白入门的,分享一下自己的想法,并且较为详细的总结一下利用OpenCv自带的Haar分类器进行人脸检测以及基于OpenCV3.1+Vs2013+C++的具体代码实现。
1637 0
OpenCV | OpenCV检测图像轮廓
OpenCV | OpenCV检测图像轮廓
0 0
人脸检测实战终极:使用 OpenCV 和 Python 进行人脸对齐
这篇博文的目的是演示如何使用 OpenCV、Python 和面部标志对齐人脸。 给定一组面部标志(输入坐标),我们的目标是将图像扭曲并转换为输出坐标空间。
0 0
目标检测进阶:使用深度学习和 OpenCV 进行目标检测
目标检测进阶:使用深度学习和 OpenCV 进行目标检测
0 0
+关注
技术小能手
云栖运营小编~
文章
问答
来源圈子
更多
+ 订阅
文章排行榜
最热
最新
相关电子书
更多
数据如何让运动更好玩
立即下载
数据如何让运动更好玩有趣
立即下载
运动手环是伪需求 智能装备才是“王道”
立即下载