开发者社区> jacoby> 正文
阿里云
为了无法计算的价值
打开APP
阿里云APP内打开

区域生长算法 C++实现

简介: 在比赛和项目中用opencv用多了,就会发现很多opencv没有实现的算法,其中一些还是十分常用,在教科书上经常出现的。作为一个弱鸡,有的简单的算法能够自己实现(比如本文所要讲的),有的写到一半就打出GG,有的直接就下不了手。
+关注继续查看

在比赛和项目中用opencv用多了,就会发现很多opencv没有实现的算法,其中一些还是十分常用,在教科书上经常出现的。作为一个弱鸡,有的简单的算法能够自己实现(比如本文所要讲的),有的写到一半就打出GG,有的直接就下不了手。。。作为一个非计算机科班的自动化系学生,想要成为一名视觉算法工程师,还是有很长的路要走啊~~

img_bd39b511621087828d7d396c5502f3f7.png
区域生长
1.算法原理

其实看上图和这个名字就很容易理解,区域生长是根据预先定义的生长准则将像素或子区域组合为更大区域的过程。基本方法是从一组“种子”点开始(原点),将与种子相似的临近像素(在特定范围内的灰度或颜色)添加到种子栈中,不断迭代,生成一大片区域。严谨的数学定义可以查看冈萨雷斯的数字图像处理。

2.算法实现

算法的步骤如下:

  • 创建一个与原图像大小相同的空白图像
  • 将种子点存入vector中,vector中存储待生长的种子点
  • 依次弹出种子点并判断种子点如周围8领域的关系(生长规则)并与最大与最小阈值进行比较,符合条件则作为下次生长的种子点
  • vector中不存在种子点后就停止生长

我这里因为项目需要,对原本的区域生长算法多加了最大与最小值的限制,作为默认参数可以不填。

/**
 * @brief 区域生长算法,输入图像应为灰度图像
 * @param srcImage 区域生长的源图像
 * @param pt 区域生长点
 * @param ch1Thres 通道的生长限制阈值,临近像素符合±chxThres范围内才能进行生长
 * @param ch1LowerBind 通道的最小值阈值
 * @param ch1UpperBind 通道的最大值阈值,在这个范围外即使临近像素符合±chxThres也不能生长
 * @return 生成的区域图像(二值类型)
 */
Mat RegionGrow(Mat srcImage, Point pt, int ch1Thres,int ch1LowerBind=0,int ch1UpperBind=255)
{
    Point pToGrowing;                       //待生长点位置
    int pGrowValue = 0;                             //待生长点灰度值
    Scalar pSrcValue = 0;                               //生长起点灰度值
    Scalar pCurValue = 0;                               //当前生长点灰度值
    Mat growImage = Mat::zeros(srcImage.size(), CV_8UC1);   //创建一个空白区域,填充为黑色
    //生长方向顺序数据
    int DIR[8][2] = {{-1,-1}, {0,-1}, {1,-1}, {1,0}, {1,1}, {0,1}, {-1,1}, {-1,0}};
    vector<Point> growPtVector;                     //生长点栈
    growPtVector.push_back(pt);                         //将生长点压入栈中
    growImage.at<uchar>(pt.y, pt.x) = 255;              //标记生长点
    pSrcValue = srcImage.at<uchar>(pt.y, pt.x);         //记录生长点的灰度值

    while (!growPtVector.empty())                       //生长栈不为空则生长
    {
        pt = growPtVector.back();                       //取出一个生长点
        growPtVector.pop_back();

        //分别对八个方向上的点进行生长
        for (int i = 0; i<9; ++i)
        {
            pToGrowing.x = pt.x + DIR[i][0];
            pToGrowing.y = pt.y + DIR[i][1];
            //检查是否是边缘点
            if (pToGrowing.x < 0 || pToGrowing.y < 0 ||
                    pToGrowing.x > (srcImage.cols-1) || (pToGrowing.y > srcImage.rows -1))
                continue;

            pGrowValue = growImage.at<uchar>(pToGrowing.y, pToGrowing.x);       //当前待生长点的灰度值
            pSrcValue = srcImage.at<uchar>(pt.y, pt.x);
            if (pGrowValue == 0)                    //如果标记点还没有被生长
            {
                pCurValue = srcImage.at<uchar>(pToGrowing.y, pToGrowing.x);
                if(pCurValue[0] <= ch1UpperBind && pCurValue[0] >= ch1LowerBind )
                {
                    if (abs(pSrcValue[0] - pCurValue[0]) < ch1Thres )                   //在阈值范围内则生长
                    {
                        growImage.at<uchar>(pToGrowing.y, pToGrowing.x) = 255;      //标记为白色
                        growPtVector.push_back(pToGrowing);                 //将下一个生长点压入栈中
                    }
                }
            }
        }
    }
    return growImage.clone();
}

上面是灰度图像的处理,我这里重载了三通道图像的区域生长

/**
 * @brief 区域生长算法,输入图像应为三通道图像(RGB、HSV、YUV等)
 * @param srcImage 区域生长的源图像
 * @param pt 区域生长点
 * @param ch1Thres ch2Thres ch3Thres 三个通道的生长限制阈值,临近像素符合±chxThres范围内才能进行生长
 * @param ch1LowerBind ch1LowerBind ch1LowerBind 三个通道的最小值阈值
 * @param ch1UpperBind ch2UpperBind ch3UpperBind 三个通道的最大值阈值,在这个范围外即使临近像素符合±chxThres也不能生长
 * @return 生成的区域图像(二值类型)
 */
Mat RegionGrow(Mat srcImage, Point pt, int ch1Thres,int ch2Thres, int ch3Thres,
               int ch1LowerBind=0,int ch1UpperBind=255,int ch2LowerBind=0,
               int ch2UpperBind=255,int ch3LowerBind=0,int ch3UpperBind=255)
{
    Point pToGrowing;                       //待生长点位置
    int pGrowValue = 0;                             //待生长点灰度值
    Scalar pSrcValue = 0;                               //生长起点灰度值
    Scalar pCurValue = 0;                               //当前生长点灰度值
    Mat growImage = Mat::zeros(srcImage.size(), CV_8UC1);   //创建一个空白区域,填充为黑色
    //生长方向顺序数据
    int DIR[8][2] = {{-1,-1}, {0,-1}, {1,-1}, {1,0}, {1,1}, {0,1}, {-1,1}, {-1,0}};
    vector<Point> growPtVector;                     //生长点栈
    growPtVector.push_back(pt);                         //将生长点压入栈中
    growImage.at<uchar>(pt.y, pt.x) = 255;              //标记生长点
    pSrcValue = srcImage.at<Vec3b>(pt.y, pt.x);         //记录生长点的灰度值

    while (!growPtVector.empty())                       //生长栈不为空则生长
    {
        pt = growPtVector.back();                       //取出一个生长点
        growPtVector.pop_back();

        //分别对八个方向上的点进行生长
        for (int i = 0; i<9; ++i)
        {
            pToGrowing.x = pt.x + DIR[i][0];
            pToGrowing.y = pt.y + DIR[i][1];
            //检查是否是边缘点
            if (pToGrowing.x < 0 || pToGrowing.y < 0 ||
                    pToGrowing.x > (srcImage.cols-1) || (pToGrowing.y > srcImage.rows -1))
                continue;

            pGrowValue = growImage.at<uchar>(pToGrowing.y, pToGrowing.x);       //当前待生长点的灰度值
            pSrcValue = srcImage.at<Vec3b>(pt.y, pt.x);
            if (pGrowValue == 0)                    //如果标记点还没有被生长
            {
                pCurValue = srcImage.at<Vec3b>(pToGrowing.y, pToGrowing.x);
                if(pCurValue[0] <= ch1UpperBind && pCurValue[0] >= ch1LowerBind&&   //限制生长点的三通道上下界
                        pCurValue[1] <= ch2UpperBind && pCurValue[1] >= ch2LowerBind &&
                        pCurValue[2] <= ch3UpperBind && pCurValue[2] >= ch3LowerBind )
                {
                    if (abs(pSrcValue[0] - pCurValue[0]) < ch1Thres &&
                            abs(pSrcValue[1] - pCurValue[1]) < ch2Thres &&
                            abs(pSrcValue[2] - pCurValue[2]) < ch3Thres)                    //在阈值范围内则生长
                    {
                        growImage.at<uchar>(pToGrowing.y, pToGrowing.x) = 255;      //标记为白色
                        growPtVector.push_back(pToGrowing);                 //将下一个生长点压入栈中
                    }
                }
            }
        }
    }
    return growImage.clone();
}
3.算法检验
img_d850d57a6e0106932ad53b57295cdb5b.png
原图像

img_f3507215b9a820fa4c0c806b20930666.png
区域生长后

References:
https://blog.csdn.net/robin__chou/article/details/50071313
数字图像处理(第三版) ——冈萨雷斯 P493

版权声明:本文内容由阿里云实名注册用户自发贡献,版权归原作者所有,阿里云开发者社区不拥有其著作权,亦不承担相应法律责任。具体规则请查看《阿里云开发者社区用户服务协议》和《阿里云开发者社区知识产权保护指引》。如果您发现本社区中有涉嫌抄袭的内容,填写侵权投诉表单进行举报,一经查实,本社区将立刻删除涉嫌侵权内容。

相关文章
模拟退火(SA)算法介绍和应用细节-附SA结合登山算法求解VRPTW问题C++代码
模拟退火(SA)算法介绍和应用细节-附SA结合登山算法求解VRPTW问题C++代码
0 0
C++模板 —— 万字带你了解C++模板(蓝桥杯算法比赛必备知识STL基础)(2)
C++模板 —— 万字带你了解C++模板(蓝桥杯算法比赛必备知识STL基础)(2)
0 0
C++模板 —— 万字带你了解C++模板(蓝桥杯算法比赛必备知识STL基础)(1)
C++模板 —— 万字带你了解C++模板(蓝桥杯算法比赛必备知识STL基础)(1)
0 0
Boost库学习笔记(二)算法模块-C++11标准
Boost库学习笔记(二)算法模块-C++11标准
0 0
【基础算法】开平方算法 & C++实现
在数学中,因为很多数的开平方都是无理数,所以我们需要借助数值计算的方式来进行近似值的求解。
0 0
【C++常用算法】STL基础语法学习 | 拷贝算法&替换算法
将容器内指定范围的元素拷贝到另一容器中
0 0
Kalman算法C++实现代码(编译运行通过)
Kalman算法C++实现代码(编译运行通过)
0 0
C++ 实现KMP字符串匹配算法
C++ 实现KMP字符串匹配算法
0 0
+关注
文章
问答
文章排行榜
最热
最新
相关电子书
更多
C++课程-对象模型
立即下载
使用C++开发PHP7扩展
立即下载
C++对象模型
立即下载