【数据结构与算法】:关于时间复杂度与空间复杂度的计算(C/C++篇)——含Leetcode刷题-1

简介: 【数据结构与算法】:关于时间复杂度与空间复杂度的计算(C/C++篇)——含Leetcode刷题

一、什么是时间复杂度和空间复杂度

1.1 算法效率

算法效率分析分为两种:第一种是时间效率,第二种是空间效率。时间效率被称为时间复杂度,而空间效率被称作空间复杂度。 时间复杂度主要衡量的是一个算法的运行速度,而空间复杂度主要衡量一个算法所需要的额外空间,在计算机发展的早期,计算机的存储容量很小。所以对空间复杂度很是在乎。但是经过计算机行业的迅速发展,计算机的存储容量已经达到了很高的程度。所以我们如今已经不需要再特别关注一个算法的空间复杂度。


1.2 时间复杂度的概念

时间复杂度的定义:在计算机科学中,算法的时间复杂度是一个函数,它定量描述了该算法的运行时间。一个算法执行所耗费的时间,从理论上说,是不能算出来的,只有在电脑上跑起来之后才知道,而且根据电脑硬件配置的不同,同一个程序跑的效率可能是不一样的,所以时间复杂度不是计算一个程序跑的时间长短。而是一个算法所花费的时间与其中语句的执行次数成正比例,算法中的基本操作的执行次数,为算法的时间复杂度,时间复杂度通常用大O渐进表示法。


1.3 空间复杂度的概念

空间复杂度是对一个算法在运行过程中临时占用存储空间大小的量度 。空间复杂度不是程序占用了多少bytes的空间,因为这个也没太大意义,所以空间复杂度算的是变量的个数。空间复杂度计算规则基本跟时间复杂度类似,也使用大O渐进表示法。


1.4 复杂度计算在算法中的意义

一张图告诉你复杂度计算的意义:

cae31dd6adeb6fc0f2ce1effe5a78160_2e4c10a285fe4b3eb40d0c46cbae9f0b.png

二、时间复杂度的计算

2.1 大O渐进表示法
// 请计算一下Func1基本操作执行了多少次?
void Func1(int N)
{
    int count = 0;
    for (int i = 0; i < N ; ++ i)
    {
        for (int j = 0; j < N ; ++ j)
        {
            ++count;
        }
    }
    for (int k = 0; k < 2 * N ; ++ k)
    {
        ++count;
    }
    int M = 10;
    while (M--)
    {
        ++count;
    }
    printf("%d\n", count);
}

0f92fe4adcae10efcc7083172aa70c64_7d095ad4eb174da5939b84e0181b0c51.png

Func1 执行的操作次数 :

F(N)=N2+2N+10


当N = 10, F(N)= 130

当N = 100,F(N)= 10210

当N = 1000,F(N)= 1002010


我们会发现,随着N的增大,这个表达式中N^2对结果的影响是最大的。时间复杂度其实是一个估算,是去看表达式中影响最大的那一项,后面的可以直接忽略掉,类似于数学中的极限。时间复杂度我们用大O的渐进表示法。


大O符号(Big O notation):是用于描述函数渐进行为的数学符号。

推导大O阶方法:


1、用常数1取代运行时间中的所有加法常数。

2、在修改后的运行次数函数中,只保留最高阶项。

3、如果最高阶项存在且不是1,则去除与这个项目相乘的常数。得到的结果就是大O阶。


使用大O的渐进表示法以后,Func1的时间复杂度为:

O(N2


通过上面我们会发现大O的渐进表示法去掉了那些对结果影响不大的项,简洁明了的表示出了执行次数。

另外有些算法的时间复杂度存在最好、平均和最坏情况:


最坏情况:任意输入规模的最大运行次数(上界)

平均情况:任意输入规模的期望运行次数

最好情况:任意输入规模的最小运行次数(下界)


例如:在一个长度为N数组中搜索一个数据x


最好情况:1次找到

最坏情况:N次找到

平均情况:N/2次找到


在实际中一般情况关注的是算法的最坏运行情况,所以数组中搜索数据时间复杂度为O(N)


2.2 常见时间复杂度计算举例【示例1】:

// 计算Func2的时间复杂度?
void Func2(int N)
{
    int count = 0;
    for (int k = 0; k < 2 * N ; ++ k)
    {
        ++count;
    }
    int M = 10;
    while (M--)
    {
        ++count;
    }
    printf("%d\n", count);
}

7dbb299839e63012572fc0ef10d79d05_2c328d3093604e9c8c3c0ee6408dca13.png

Func2的执行操作次数:F(N)=2N+10


根据上面的大O渐进表示法,最高阶的系数不为1,就去除最高项的系数,即Func2的时间复杂度为:O(N)


【示例2】:

// 计算Func3的时间复杂度?
void Func3(int N, int M)
{
    int count = 0;
    for (int k = 0; k < M; ++ k)
    {
        ++count;
    }
    for (int k = 0; k < N ; ++ k)
    {
        ++count;
    }
    printf("%d\n", count);
}

116201266c09b243381dd2a9c2a3b7b9_6eb16386257f493eb07958326c9052ac.png

Func3的执行操作次数:

F(N)=N+M


时间复杂度为:

O(M+N)


由于不确定M和N的大小,所以这里都不能忽略掉。假设给了条件:

M远大于N,那么其时间复杂度就是O(M)

M和N差不多大,那么其时间复杂度就是O(M)或则O(N),相当于两倍的M或则N。

【示例3】:

// 计算Func4的时间复杂度?
void Func4(int N)
{
    int count = 0;
    for (int k = 0; k < 100; ++ k)
    {
        ++count;
    }
    printf("%d\n", count);
}

像这种可以直接知道具体的执行次数的那么那么他的时间复杂度就是:


O(1)


注意:如果一个算法的时间复杂度为O(1)并不是他执行一次,而是执行了常数次,这个常数不一定是1,可能是10,可能是100,也有可能是1000,反正是一个具体的数。

【示例4】:

// 计算strchr的时间复杂度?
const char * strchr ( const char * str, char character )
{
    while(*str != '\0')
    {
        if(*str == character)
            return str;
        ++str;
    }
    return NULL;
}

ce4f7c53c4adfbbaa1315cc210c7dc0c_18751c3a66eb49c1a1c5b405728ece9f.png

对于这个算法要分情况(假设字符串长度为N):


最好情况:只执行一次就找到了所需字符,时间复杂度为O(1)

平均情况:执行到N/2的时候找到所需字符,时间复杂度为O(N / 2)

最坏情况:执行到N次才找到所需字符,时间复杂度为O(N)


像这种需要分情况的算法,我们一般都会采取最坏的打算,毕竟具体的执行次数是不确定的,取最坏情况也就意味着不会出现更差的情况,更加合理。

所以这个算法的时间复杂度就是:O(N)

【示例5】:

// 计算BubbleSort的时间复杂度?
void BubbleSort(int* a, int n)
{
    assert(a);
    for (size_t end = n; end > 0; --end)
    {
        int exchange = 0;
        for (size_t i = 1; i < end; ++i)
        {
            if (a[i-1] > a[i])
            {
                Swap(&a[i-1], &a[i]);
                exchange = 1;
            }
        }
        if (exchange == 0)
            break;
    }
}

冒泡排序的时间复杂度的计算,假设数组的长度为N:

比较次数:

第一趟冒泡:N

第二趟冒泡:N - 1

第三趟冒泡:N - 2

第N趟冒泡:1

具体的执行次数:

F(N)=(N+1)∗N/2


展开之后得到的时间复杂度就是:

O(N2


【示例6】:

// 计算BinarySearch的时间复杂度?
int BinarySearch(int* a, int n, int x)
{
    assert(a);
    int begin = 0;
    int end = n;
    while (begin < end)
    {
        int mid = begin + ((end-begin)>>1);
        if (a[mid] < x)
            begin = mid+1;
        else if (a[mid] > x)
            end = mid;
        else
            return mid;
    }
    return -1;
}

二分查找的时间复杂度计算,假设数组长度为N:

使用二分查找首先要确保这个数组是有序的,选定一个中间值,如果所找的值比中间值要大,就可以利用left来缩放空间(mid的取值范围在left和right之间,一般取left和right的中间值),每次查找都能折半,直到找到所需的值。

这种算法也需要分情况:

我们假设找了X次,数组长度为N:


最好情况(X = 1):只找了一次,时间复杂度为O(1)

找的次数:1 * 2 * 2 * 2 … * 2 = N --> 2^X = N

最坏情况:找的次数为

X=log2N

在算法的复杂度计算中,习惯省略对数的底数,即这个算法的时间复杂度为:

O(N)=logN


【示例7】:

// 计算阶乘递归Factorial的时间复杂度?
long long Factorial(size_t N)
{
    return N < 2 ? N : Factorial(N-1)*N;
}

求10的阶乘:

递归调用了N次,每次递归运算了 --> O(1)

即这个算法的时间复杂度为:

O(N)

常见的复杂度对比:


【数据结构与算法】:关于时间复杂度与空间复杂度的计算(C/C++篇)——含Leetcode刷题-2

https://developer.aliyun.com/article/1538358

相关文章
|
8天前
|
存储 监控 算法
基于 C++ 哈希表算法实现局域网监控电脑屏幕的数据加速机制研究
企业网络安全与办公管理需求日益复杂的学术语境下,局域网监控电脑屏幕作为保障信息安全、规范员工操作的重要手段,已然成为网络安全领域的关键研究对象。其作用类似网络空间中的 “电子眼”,实时捕获每台电脑屏幕上的操作动态。然而,面对海量监控数据,实现高效数据存储与快速检索,已成为提升监控系统性能的核心挑战。本文聚焦于 C++ 语言中的哈希表算法,深入探究其如何成为局域网监控电脑屏幕数据处理的 “加速引擎”,并通过详尽的代码示例,展现其强大功能与应用价值。
30 1
|
2月前
|
存储 负载均衡 算法
基于 C++ 语言的迪杰斯特拉算法在局域网计算机管理中的应用剖析
在局域网计算机管理中,迪杰斯特拉算法用于优化网络路径、分配资源和定位故障节点,确保高效稳定的网络环境。该算法通过计算最短路径,提升数据传输速率与稳定性,实现负载均衡并快速排除故障。C++代码示例展示了其在网络模拟中的应用,为企业信息化建设提供有力支持。
84 15
|
2月前
|
存储 算法 数据处理
公司局域网管理中的哈希表查找优化 C++ 算法探究
在数字化办公环境中,公司局域网管理至关重要。哈希表作为一种高效的数据结构,通过哈希函数将关键值(如IP地址、账号)映射到数组索引,实现快速的插入、删除与查找操作。例如,在员工登录验证和设备信息管理中,哈希表能显著提升效率,避免传统线性查找的低效问题。本文以C++为例,展示了哈希表在局域网管理中的具体应用,包括设备MAC地址与IP分配的存储与查询,并探讨了优化哈希函数和扩容策略,确保网络管理高效准确。
|
1月前
|
存储 监控 算法
基于 C++ 哈希表算法的局域网如何监控电脑技术解析
当代数字化办公与生活环境中,局域网的广泛应用极大地提升了信息交互的效率与便捷性。然而,出于网络安全管理、资源合理分配以及合规性要求等多方面的考量,对局域网内计算机进行有效监控成为一项至关重要的任务。实现局域网内计算机监控,涉及多种数据结构与算法的运用。本文聚焦于 C++ 编程语言中的哈希表算法,深入探讨其在局域网计算机监控场景中的应用,并通过详尽的代码示例进行阐释。
47 4
|
3月前
|
存储 监控 算法
公司监控上网软件架构:基于 C++ 链表算法的数据关联机制探讨
在数字化办公时代,公司监控上网软件成为企业管理网络资源和保障信息安全的关键工具。本文深入剖析C++中的链表数据结构及其在该软件中的应用。链表通过节点存储网络访问记录,具备高效插入、删除操作及节省内存的优势,助力企业实时追踪员工上网行为,提升运营效率并降低安全风险。示例代码展示了如何用C++实现链表记录上网行为,并模拟发送至服务器。链表为公司监控上网软件提供了灵活高效的数据管理方式,但实际开发还需考虑安全性、隐私保护等多方面因素。
50 0
公司监控上网软件架构:基于 C++ 链表算法的数据关联机制探讨
|
4月前
|
存储 算法 测试技术
【C++数据结构——树】二叉树的遍历算法(头歌教学实验平台习题) 【合集】
本任务旨在实现二叉树的遍历,包括先序、中序、后序和层次遍历。首先介绍了二叉树的基本概念与结构定义,并通过C++代码示例展示了如何定义二叉树节点及构建二叉树。接着详细讲解了四种遍历方法的递归实现逻辑,以及层次遍历中队列的应用。最后提供了测试用例和预期输出,确保代码正确性。通过这些内容,帮助读者理解并掌握二叉树遍历的核心思想与实现技巧。
140 2
|
5月前
|
存储 算法 安全
基于红黑树的局域网上网行为控制C++ 算法解析
在当今网络环境中,局域网上网行为控制对企业和学校至关重要。本文探讨了一种基于红黑树数据结构的高效算法,用于管理用户的上网行为,如IP地址、上网时长、访问网站类别和流量使用情况。通过红黑树的自平衡特性,确保了高效的查找、插入和删除操作。文中提供了C++代码示例,展示了如何实现该算法,并强调其在网络管理中的应用价值。
|
4月前
|
存储 算法 安全
基于哈希表的文件共享平台 C++ 算法实现与分析
在数字化时代,文件共享平台不可或缺。本文探讨哈希表在文件共享中的应用,包括原理、优势及C++实现。哈希表通过键值对快速访问文件元数据(如文件名、大小、位置等),查找时间复杂度为O(1),显著提升查找速度和用户体验。代码示例展示了文件上传和搜索功能,实际应用中需解决哈希冲突、动态扩容和线程安全等问题,以优化性能。
|
7月前
|
存储 算法 C++
高精度算法(加、减、乘、除,使用c++实现)
高精度算法(加、减、乘、除,使用c++实现)
1685 0
高精度算法(加、减、乘、除,使用c++实现)
|
7月前
|
数据可视化 搜索推荐 Python
Leecode 刷题笔记之可视化六大排序算法:冒泡、快速、归并、插入、选择、桶排序
这篇文章是关于LeetCode刷题笔记,主要介绍了六大排序算法(冒泡、快速、归并、插入、选择、桶排序)的Python实现及其可视化过程。
72 0

热门文章

最新文章