【数据结构与算法】:关于时间复杂度与空间复杂度的计算(C/C++篇)——含Leetcode刷题-1

简介: 【数据结构与算法】:关于时间复杂度与空间复杂度的计算(C/C++篇)——含Leetcode刷题

一、什么是时间复杂度和空间复杂度

1.1 算法效率

算法效率分析分为两种:第一种是时间效率,第二种是空间效率。时间效率被称为时间复杂度,而空间效率被称作空间复杂度。 时间复杂度主要衡量的是一个算法的运行速度,而空间复杂度主要衡量一个算法所需要的额外空间,在计算机发展的早期,计算机的存储容量很小。所以对空间复杂度很是在乎。但是经过计算机行业的迅速发展,计算机的存储容量已经达到了很高的程度。所以我们如今已经不需要再特别关注一个算法的空间复杂度。


1.2 时间复杂度的概念

时间复杂度的定义:在计算机科学中,算法的时间复杂度是一个函数,它定量描述了该算法的运行时间。一个算法执行所耗费的时间,从理论上说,是不能算出来的,只有在电脑上跑起来之后才知道,而且根据电脑硬件配置的不同,同一个程序跑的效率可能是不一样的,所以时间复杂度不是计算一个程序跑的时间长短。而是一个算法所花费的时间与其中语句的执行次数成正比例,算法中的基本操作的执行次数,为算法的时间复杂度,时间复杂度通常用大O渐进表示法。


1.3 空间复杂度的概念

空间复杂度是对一个算法在运行过程中临时占用存储空间大小的量度 。空间复杂度不是程序占用了多少bytes的空间,因为这个也没太大意义,所以空间复杂度算的是变量的个数。空间复杂度计算规则基本跟时间复杂度类似,也使用大O渐进表示法。


1.4 复杂度计算在算法中的意义

一张图告诉你复杂度计算的意义:

cae31dd6adeb6fc0f2ce1effe5a78160_2e4c10a285fe4b3eb40d0c46cbae9f0b.png

二、时间复杂度的计算

2.1 大O渐进表示法
// 请计算一下Func1基本操作执行了多少次?
void Func1(int N)
{
    int count = 0;
    for (int i = 0; i < N ; ++ i)
    {
        for (int j = 0; j < N ; ++ j)
        {
            ++count;
        }
    }
    for (int k = 0; k < 2 * N ; ++ k)
    {
        ++count;
    }
    int M = 10;
    while (M--)
    {
        ++count;
    }
    printf("%d\n", count);
}

0f92fe4adcae10efcc7083172aa70c64_7d095ad4eb174da5939b84e0181b0c51.png

Func1 执行的操作次数 :

F(N)=N2+2N+10


当N = 10, F(N)= 130

当N = 100,F(N)= 10210

当N = 1000,F(N)= 1002010


我们会发现,随着N的增大,这个表达式中N^2对结果的影响是最大的。时间复杂度其实是一个估算,是去看表达式中影响最大的那一项,后面的可以直接忽略掉,类似于数学中的极限。时间复杂度我们用大O的渐进表示法。


大O符号(Big O notation):是用于描述函数渐进行为的数学符号。

推导大O阶方法:


1、用常数1取代运行时间中的所有加法常数。

2、在修改后的运行次数函数中,只保留最高阶项。

3、如果最高阶项存在且不是1,则去除与这个项目相乘的常数。得到的结果就是大O阶。


使用大O的渐进表示法以后,Func1的时间复杂度为:

O(N2


通过上面我们会发现大O的渐进表示法去掉了那些对结果影响不大的项,简洁明了的表示出了执行次数。

另外有些算法的时间复杂度存在最好、平均和最坏情况:


最坏情况:任意输入规模的最大运行次数(上界)

平均情况:任意输入规模的期望运行次数

最好情况:任意输入规模的最小运行次数(下界)


例如:在一个长度为N数组中搜索一个数据x


最好情况:1次找到

最坏情况:N次找到

平均情况:N/2次找到


在实际中一般情况关注的是算法的最坏运行情况,所以数组中搜索数据时间复杂度为O(N)


2.2 常见时间复杂度计算举例【示例1】:

// 计算Func2的时间复杂度?
void Func2(int N)
{
    int count = 0;
    for (int k = 0; k < 2 * N ; ++ k)
    {
        ++count;
    }
    int M = 10;
    while (M--)
    {
        ++count;
    }
    printf("%d\n", count);
}

7dbb299839e63012572fc0ef10d79d05_2c328d3093604e9c8c3c0ee6408dca13.png

Func2的执行操作次数:F(N)=2N+10


根据上面的大O渐进表示法,最高阶的系数不为1,就去除最高项的系数,即Func2的时间复杂度为:O(N)


【示例2】:

// 计算Func3的时间复杂度?
void Func3(int N, int M)
{
    int count = 0;
    for (int k = 0; k < M; ++ k)
    {
        ++count;
    }
    for (int k = 0; k < N ; ++ k)
    {
        ++count;
    }
    printf("%d\n", count);
}

116201266c09b243381dd2a9c2a3b7b9_6eb16386257f493eb07958326c9052ac.png

Func3的执行操作次数:

F(N)=N+M


时间复杂度为:

O(M+N)


由于不确定M和N的大小,所以这里都不能忽略掉。假设给了条件:

M远大于N,那么其时间复杂度就是O(M)

M和N差不多大,那么其时间复杂度就是O(M)或则O(N),相当于两倍的M或则N。

【示例3】:

// 计算Func4的时间复杂度?
void Func4(int N)
{
    int count = 0;
    for (int k = 0; k < 100; ++ k)
    {
        ++count;
    }
    printf("%d\n", count);
}

像这种可以直接知道具体的执行次数的那么那么他的时间复杂度就是:


O(1)


注意:如果一个算法的时间复杂度为O(1)并不是他执行一次,而是执行了常数次,这个常数不一定是1,可能是10,可能是100,也有可能是1000,反正是一个具体的数。

【示例4】:

// 计算strchr的时间复杂度?
const char * strchr ( const char * str, char character )
{
    while(*str != '\0')
    {
        if(*str == character)
            return str;
        ++str;
    }
    return NULL;
}

ce4f7c53c4adfbbaa1315cc210c7dc0c_18751c3a66eb49c1a1c5b405728ece9f.png

对于这个算法要分情况(假设字符串长度为N):


最好情况:只执行一次就找到了所需字符,时间复杂度为O(1)

平均情况:执行到N/2的时候找到所需字符,时间复杂度为O(N / 2)

最坏情况:执行到N次才找到所需字符,时间复杂度为O(N)


像这种需要分情况的算法,我们一般都会采取最坏的打算,毕竟具体的执行次数是不确定的,取最坏情况也就意味着不会出现更差的情况,更加合理。

所以这个算法的时间复杂度就是:O(N)

【示例5】:

// 计算BubbleSort的时间复杂度?
void BubbleSort(int* a, int n)
{
    assert(a);
    for (size_t end = n; end > 0; --end)
    {
        int exchange = 0;
        for (size_t i = 1; i < end; ++i)
        {
            if (a[i-1] > a[i])
            {
                Swap(&a[i-1], &a[i]);
                exchange = 1;
            }
        }
        if (exchange == 0)
            break;
    }
}

冒泡排序的时间复杂度的计算,假设数组的长度为N:

比较次数:

第一趟冒泡:N

第二趟冒泡:N - 1

第三趟冒泡:N - 2

第N趟冒泡:1

具体的执行次数:

F(N)=(N+1)∗N/2


展开之后得到的时间复杂度就是:

O(N2


【示例6】:

// 计算BinarySearch的时间复杂度?
int BinarySearch(int* a, int n, int x)
{
    assert(a);
    int begin = 0;
    int end = n;
    while (begin < end)
    {
        int mid = begin + ((end-begin)>>1);
        if (a[mid] < x)
            begin = mid+1;
        else if (a[mid] > x)
            end = mid;
        else
            return mid;
    }
    return -1;
}

二分查找的时间复杂度计算,假设数组长度为N:

使用二分查找首先要确保这个数组是有序的,选定一个中间值,如果所找的值比中间值要大,就可以利用left来缩放空间(mid的取值范围在left和right之间,一般取left和right的中间值),每次查找都能折半,直到找到所需的值。

这种算法也需要分情况:

我们假设找了X次,数组长度为N:


最好情况(X = 1):只找了一次,时间复杂度为O(1)

找的次数:1 * 2 * 2 * 2 … * 2 = N --> 2^X = N

最坏情况:找的次数为

X=log2N

在算法的复杂度计算中,习惯省略对数的底数,即这个算法的时间复杂度为:

O(N)=logN


【示例7】:

// 计算阶乘递归Factorial的时间复杂度?
long long Factorial(size_t N)
{
    return N < 2 ? N : Factorial(N-1)*N;
}

求10的阶乘:

递归调用了N次,每次递归运算了 --> O(1)

即这个算法的时间复杂度为:

O(N)

常见的复杂度对比:


【数据结构与算法】:关于时间复杂度与空间复杂度的计算(C/C++篇)——含Leetcode刷题-2

https://developer.aliyun.com/article/1538358

相关文章
|
1月前
|
机器学习/深度学习 缓存 算法
Python算法设计中的时间复杂度与空间复杂度,你真的理解对了吗?
【10月更文挑战第4天】在Python编程中,算法的设计与优化至关重要,尤其在数据处理、科学计算及机器学习领域。本文探讨了评估算法性能的核心指标——时间复杂度和空间复杂度。通过详细解释两者的概念,并提供快速排序和字符串反转的示例代码,帮助读者深入理解这些概念。同时,文章还讨论了如何在实际应用中平衡时间和空间复杂度,以实现最优性能。
59 6
|
28天前
|
搜索推荐 算法
插入排序算法的平均时间复杂度解析
【10月更文挑战第12天】 插入排序是一种简单直观的排序算法,通过不断将未排序元素插入到已排序部分的合适位置来完成排序。其平均时间复杂度为$O(n^2)$,适用于小规模或部分有序的数据。尽管效率不高,但在特定场景下仍具优势。
|
1月前
|
机器学习/深度学习 存储 缓存
数据结构与算法学习十:排序算法介绍、时间频度、时间复杂度、常用时间复杂度介绍
文章主要介绍了排序算法的分类、时间复杂度的概念和计算方法,以及常见的时间复杂度级别,并简单提及了空间复杂度。
23 1
数据结构与算法学习十:排序算法介绍、时间频度、时间复杂度、常用时间复杂度介绍
|
1月前
|
存储 算法
算法的时间复杂度和空间复杂度
本文详细讨论了算法的时间复杂度和空间复杂度,包括它们的概念、计算方法和常见复杂度的对比,并通过多个实例解释了如何计算算法的时间和空间复杂度。
60 0
算法的时间复杂度和空间复杂度
|
1月前
|
机器学习/深度学习 存储 算法
【初阶数据结构】算法效率大揭秘 | 时间与空间复杂度的深度剖析
【初阶数据结构】算法效率大揭秘 | 时间与空间复杂度的深度剖析
|
2月前
|
算法 Python
震惊!Python 算法设计背后,时间复杂度与空间复杂度的惊天秘密大起底!
在 Python 算法设计中,理解并巧妙运用时间复杂度和空间复杂度的知识,是实现高效、优雅代码的必经之路。通过不断地实践和优化,我们能够在这两个因素之间找到最佳的平衡点,创造出性能卓越的程序。
39 4
|
1月前
|
算法 Java C语言
【数据结构】后缀(逆波兰)表达式的计算以及中缀转后缀的方法
【数据结构】后缀(逆波兰)表达式的计算以及中缀转后缀的方法
33 0
|
1月前
|
算法 C语言
深入理解算法效率:时间复杂度与空间复杂度
深入理解算法效率:时间复杂度与空间复杂度
|
2月前
|
Unix Shell Linux
LeetCode刷题 Shell编程四则 | 194. 转置文件 192. 统计词频 193. 有效电话号码 195. 第十行
本文提供了几个Linux shell脚本编程问题的解决方案,包括转置文件内容、统计词频、验证有效电话号码和提取文件的第十行,每个问题都给出了至少一种实现方法。
LeetCode刷题 Shell编程四则 | 194. 转置文件 192. 统计词频 193. 有效电话号码 195. 第十行
|
3月前
|
搜索推荐 索引 Python
【Leetcode刷题Python】牛客. 数组中未出现的最小正整数
本文介绍了牛客网题目"数组中未出现的最小正整数"的解法,提供了一种满足O(n)时间复杂度和O(1)空间复杂度要求的原地排序算法,并给出了Python实现代码。
110 2