【大数据新手上路】“零基础”系列课程--Flume收集网站日志数据到MaxCompute

简介: 概述:大数据时代,谁掌握了足够的数据,谁就有可能掌握未来,而其中的数据采集就是将来的流动资产积累。 任何规模的企业,每时每刻都在产生大量的数据,但这些数据如何归集、提炼始终是一个困扰。而大数据技术的意义确实不在于掌握规模庞大的数据信息,而在于对这些数据进行智能处理,从中分析和挖掘出有价值的

免费开通大数据服务:https://www.aliyun.com/product/odps

概述:大数据时代,谁掌握了足够的数据,谁就有可能掌握未来,而其中的数据采集就是将来的流动资产积累。


任何规模的企业,每时每刻都在产生大量的数据,但这些数据如何归集、提炼始终是一个困扰。而大数据技术的意义确实不在于掌握规模庞大的数据信息,而在于对这些数据进行智能处理,从中分析和挖掘出有价值的信息,但前提是如何获取大量有价值的数据。


相信很多做过网站管理的人对网站访问日志(Access Log)应该不会陌生,现在主流的网站服务器(如apache,tomcat,ngxin等)都支持将日志数据记录到服务器的日志文件中。

网站的访问日志中记录了很多有用的信息,比如正常用户的访问足迹、恶意捣乱的足迹、用户的入站方式、出站页面等信息。对以上信息汇总分类后,可以得到更有价值的东西,比如可以得到搜索引擎的抓取频率和来访时间段、可以得到哪些页面是用户的热搜等。


MaxCompute



下面介绍一个对中小企业客户比较适合的,低成本投入的日志采集存储方案;


对于一个比较活跃的网站来说,访问日志将会是一个海量的数据,考虑到网站日志更新频繁、和海量数据的特点,我选择了Flume + MaxCompute的采集和存储方案。


Flume

Flume是一个分布式、高可靠、高可用的海量日志聚合的系统,支持在系统中定制各类数据发送方,用于收集数据;同时,Flume提供对数据进行简单处理,并写到各种数据接受方(可定制)的能力。


MaxCompute

MaxCompute原名是ODPS,是由阿里云自主研发的一款服务,提供针对TB/PB级数据、实时性要求不高的分布式处理能力,它适用于海量数据的存储、计算,商业智能等领域。


flume能够支持多种Source和Sink插件,而我们今天要介绍的就是如何使用Apache flume的 Datahub sink插件将日志数据实时上传到Datahub上然后归档到MaxCompute表中。这样做不需要投入大量人力去对环境进行部署和维护,可以有效降低企业成本,并保障了数据安全,是一个方便高效的运行方案。

 

实验前您需要:

1)拥有Linux系统;

2)拥有一定的开发经验;

3)拥有阿里云官网实名认证账号,并且创建好账号Access Key;

 

本实验您将完成以下任务:

1)安装JDKFlume

2)开通MaxCompute(https://www.aliyun.com/product/odps)Datahub

3)下载并部署Datahub Sink插件;

4)创建需要上传的本地文件;

5)创建Datahub Topic;

6)配置Flume作业配置文件;

7)启动Flume,将数据上传至Datahub;

8)配置Connector将数据归档至MaxCompute。

 

17分钟视频教程】https://yq.aliyun.com/edu/lesson/play/487


实验手册如何实现Flume收集网站日志数据到MaxCompute.pdf


常见问题Flume采集网站日志到MaxCompute常见问题汇总



欢迎加入阿里云数加钉钉群讨论

35a12d1cfb9f44bb6eead5bf43e9e0ca60393eff

 

相关实践学习
基于MaxCompute的热门话题分析
Apsara Clouder大数据专项技能认证配套课程:基于MaxCompute的热门话题分析
目录
相关文章
|
存储 运维 监控
【Flume】flume 日志管理中的应用
【4月更文挑战第4天】【Flume】flume 日志管理中的应用
|
4月前
|
数据采集 缓存 大数据
【赵渝强老师】大数据日志采集引擎Flume
Apache Flume 是一个分布式、可靠的数据采集系统,支持从多种数据源收集日志信息,并传输至指定目的地。其核心架构由Source、Channel、Sink三组件构成,通过Event封装数据,保障高效与可靠传输。
303 1
|
存储 数据采集 数据处理
【Flume拓扑揭秘】掌握Flume的四大常用结构,构建强大的日志收集系统!
【8月更文挑战第24天】Apache Flume是一个强大的工具,专为大规模日志数据的收集、聚合及传输设计。其核心架构包括源(Source)、通道(Channel)与接收器(Sink)。Flume支持多样化的拓扑结构以适应不同需求,包括单层、扇入(Fan-in)、扇出(Fan-out)及复杂多层拓扑。单层拓扑简单直观,适用于单一数据流场景;扇入结构集中处理多源头数据;扇出结构则实现数据多目的地分发;复杂多层拓扑提供高度灵活性,适合多层次数据处理。通过灵活配置,Flume能够高效构建各种规模的数据收集系统。
388 0
|
SQL 分布式计算 Hadoop
Hadoop-19 Flume Agent批量采集数据到HDFS集群 监听Hive的日志 操作则把记录写入到HDFS 方便后续分析
Hadoop-19 Flume Agent批量采集数据到HDFS集群 监听Hive的日志 操作则把记录写入到HDFS 方便后续分析
303 2
|
存储 数据采集 分布式计算
Hadoop-17 Flume 介绍与环境配置 实机云服务器测试 分布式日志信息收集 海量数据 实时采集引擎 Source Channel Sink 串行复制负载均衡
Hadoop-17 Flume 介绍与环境配置 实机云服务器测试 分布式日志信息收集 海量数据 实时采集引擎 Source Channel Sink 串行复制负载均衡
280 1
|
存储 分布式计算 大数据
【Flume的大数据之旅】探索Flume如何成为大数据分析的得力助手,从日志收集到实时处理一网打尽!
【8月更文挑战第24天】Apache Flume是一款高效可靠的数据收集系统,专为Hadoop环境设计。它能在数据产生端与分析/存储端间搭建桥梁,适用于日志收集、数据集成、实时处理及数据备份等多种场景。通过监控不同来源的日志文件并将数据标准化后传输至Hadoop等平台,Flume支持了性能监控、数据分析等多种需求。此外,它还能与Apache Storm或Flink等实时处理框架集成,实现数据的即时分析。下面展示了一个简单的Flume配置示例,说明如何将日志数据导入HDFS进行存储。总之,Flume凭借其灵活性和强大的集成能力,在大数据处理流程中占据了重要地位。
356 3
|
存储 Java 关系型数据库
基于JSP的九宫格日志网站
基于JSP的九宫格日志网站
|
5月前
|
机器学习/深度学习 传感器 分布式计算
数据才是真救命的:聊聊如何用大数据提升灾难预警的精准度
数据才是真救命的:聊聊如何用大数据提升灾难预警的精准度
383 14
|
7月前
|
数据采集 分布式计算 DataWorks
ODPS在某公共数据项目上的实践
本项目基于公共数据定义及ODPS与DataWorks技术,构建一体化智能化数据平台,涵盖数据目录、归集、治理、共享与开放六大目标。通过十大子系统实现全流程管理,强化数据安全与流通,提升业务效率与决策能力,助力数字化改革。
241 4
|
6月前
|
机器学习/深度学习 运维 监控
运维不怕事多,就怕没数据——用大数据喂饱你的运维策略
运维不怕事多,就怕没数据——用大数据喂饱你的运维策略
312 0

热门文章

最新文章

相关产品

  • 云原生大数据计算服务 MaxCompute