AI学习笔记之——如何理解机器学习(Machine Learning)

简介: 前面虽然介绍了概率和贝叶斯网络,但是还是没有正式介绍AI中最重要的算法——机器学习。如果说概率论是机器学习的基石,那么机器学习算法和理论就是支撑整个AI系统的支柱。
img_89ee3fdcff36acc337a6ce350cbf0de1.png

前面虽然介绍了概率贝叶斯网络,但是还是没有正式介绍AI中最重要的算法——机器学习。如果说概率论是机器学习的基石,那么机器学习算法和理论就是支撑整个AI系统的支柱。现在比较火的深度学习神经网路等等其实也就是机器学习的一个具体方法和分支。

我们知道程序员如果你要命令计算机做一件事情,他需要知道解决这个事情的每一个步骤,然后用判断,循环等指令,一步一步地告诉计算机如何去完成。比如自动售货机,计算机从你输入的号码查询到商品的价格和货架的位置,等待你付款成功之后就将商品“吐”出来。对于这种重复性的劳动这种程序是非常高效的。但是某些问题诸如自动驾驶问题,是不可能通过这种方式解决的。所以就有了现在最流行的机器学习。

img_35b7ef8a19ea87a755a080e403f767f2.png

机器学习就是和人类一样,通过不停地输入数据(信息)然后自动学习解决问题的办法。比如图片识别,小孩子是不可能出生的时候就知道什么是人什么是猫什么是狗,而是家长和老师们不停地在图片,视频或者现实生活当中给他们“指出”这是猫这是狗,小孩看(数据输入)多了自然就知道猫和狗的区别,下次在见到相同的动物也就学会了识别猫狗了。机器学习一样,人类标记(指出)大量带有猫狗的图片“喂”给机器,通过机器学习算法,机器自动就掌握了学习识别猫狗的算法,于是我们就可以用这个经过训练的机器去帮我们去识别猫狗了。

img_78d7662f250a4c4c8e7f2f9941b17809.png

机器学习有很多分类,比如上面识别猫狗的例子就是一种用于分类(Classification)的监督学习算法(Supervised Learning)。那理解机器学习,首先就需要了解机器学习算法是怎么分类的,机器学习算法可以从以下几个角度来进行分类:

1、 学习什么(What)

就是这个机器学习的算法是用来学习什么的,是学习参数(Parameters)的吗?比如下雨的概率。是学习结构(Structure)吗? 比如贝叶斯网络的结构。还是学习隐藏的概念(Hidden concepts)比如广告商发现喜爱广告的不同群体。

2、从那里学习(What From)

是监督学习(Supervised Learning),无监督学习(Unsupervised Learning)还是强化学习(Reinforcement Learning)。前两者的区别是是否有人类标记。而是否是强化学习是指学习者是否是在与环境的互动中不停学习的,比如对话机器人。

3、学来干什么(What for)

是用来预测(Prediction), 比如预测天气;是用来诊断(Diagnostics),比如诊断病情;还是用来总结(Summarize)比如写阅读总结;等等用途

4、怎么学习(How)

是被动(Passive)的吗? 比如学习者是否这是观察者而不会改变环境和数据,还是主动的(Active)。是线上(Online)的还是线下(offline)的这取决于数据是在学习之前产生的还是在学习当中不停地产生。

5、学习的输出(Output)

是分类(Classification)呢(比如识别猫狗)还是回归(regression)比如预测房价。

6 、学习细节(Detail)

学习建立模型是越普遍(generative)越好,还是越特定(Discriminative)越好呢。

上面就从各个角度对不同的机器学习进行分类,虽然看起来比较浮于表面,但是这对真正理解机器学习非常重要,希望在今后的笔记中与大家一起学习,不断进步。


相关文章
人工智能学习笔记之——人工智能基本概念和词汇
人工智能学习笔记二 —— 定义问题


文章首发steemit.com 为了方便墙内阅读,搬运至此,欢迎留言或者访问我的Steemit主页

目录
相关文章
|
1月前
|
人工智能 自然语言处理 IDE
模型微调不再被代码难住!PAI和Qwen3-Coder加速AI开发新体验
通义千问 AI 编程大模型 Qwen3-Coder 正式开源,阿里云人工智能平台 PAI 支持云上一键部署 Qwen3-Coder 模型,并可在交互式建模环境中使用 Qwen3-Coder 模型。
437 109
|
5月前
|
机器学习/深度学习 人工智能 供应链
从概念到商业价值:AI、机器学习与深度学习全景指南
在这个科技飞速发展的时代🚀,人工智能正以惊人的速度渗透到我们的生活和工作中👀。但面对铺天盖地的AI术语和概念,很多人感到困惑不已😣。"AI"、"机器学习"、"深度学习"和"神经网络"到底有什么区别?它们如何相互关联?如何利用这些技术提升工作效率和创造价值?
|
5月前
|
人工智能 API 开发者
用Qwen3+MCPs实现AI自动发布小红书笔记!支持图文和视频
魔搭自动发布小红书MCP,是魔搭开发者小伙伴实现的小红书笔记自动发布器,可以通过这个MCP自动完成小红书标题、内容和图片的发布。
1950 41
|
4月前
|
人工智能 监控 测试技术
云上AI推理平台全掌握 (1):PAI-EAS LLM服务一键压测
在AI技术飞速发展的今天,大语言模型(LLM)、多模态模型等前沿技术正深刻改变行业格局。推理服务是大模型从“实验室突破”走向“产业级应用”的必要环节,需直面高并发流量洪峰、低延时响应诉求、异构硬件优化适配、成本精准控制等复杂挑战。 阿里云人工智能平台 PAI 致力于为用户提供全栈式、高可用的推理服务能力。在本系列技术专题中,我们将围绕分布式推理架构、Serverless 弹性资源全球调度、压测调优和服务可观测等关键技术方向,展现 PAI 平台在推理服务侧的产品能力,助力企业和开发者在 AI 时代抢占先机,让我们一起探索云上 AI 推理的无限可能,释放大模型的真正价值!
|
4月前
|
机器学习/深度学习 PyTorch API
昇腾AI4S图机器学习:DGL消息传递接口的PyG替换
DGL (Deep Graph Learning) 和 PyG (Pytorch Geometric) 是两个主流的图神经网络库,它们在API设计和底层实现上有一定差异,在不同场景下,研究人员会使用不同的依赖库,昇腾NPU对PyG图机器学习库的支持亲和度更高,因此有些时候需要做DGL接口的PyG替换。
|
4月前
|
机器学习/深度学习 PyTorch API
昇腾AI4S图机器学习:DGL图构建接口的PyG替换
本文探讨了在图神经网络中将DGL接口替换为PyG实现的方法,重点以RFdiffusion蛋白质设计模型中的SE3Transformer为例。SE3Transformer通过SE(3)等变性提取三维几何特征,其图构建部分依赖DGL接口。文章详细介绍了两个关键函数的替换:`make_full_graph` 和 `make_topk_graph`。前者构建完全连接图,后者生成k近邻图。通过PyG的高效实现(如`knn_graph`),我们简化了图结构创建过程,并调整边特征处理逻辑以兼容不同框架,从而更好地支持昇腾NPU等硬件环境。此方法为跨库迁移提供了实用参考。
|
5月前
|
数据可视化 Rust 机器学习/深度学习
mlop.ai 无脑使用教程 (机器学习工具 WandB/ClearML 的首个国区开源平替)
mlop.ai 是首个为国区用户优化的机器学习工具,全栈免费开源,是主流付费解决方案 ClearML/WandB 的开源平替。常规实验追踪的工具经常大幅人为降速,mlop因为底层为Rust代码,能轻松支持高频数据写入。如需更多开发者帮助或企业支持,敬请联系cn@mlop.ai
297 12
mlop.ai 无脑使用教程 (机器学习工具 WandB/ClearML 的首个国区开源平替)
|
5月前
|
人工智能 IDE 开发工具
📘 AI Clouder认证学习笔记|从初入江湖到晨光乍现
正如史蒂夫·乔布斯所言:“求知若渴,虚心若愚。”本文是一篇AI Clouder认证学习笔记,记录了一位初学者在探索AI领域的过程中所经历的挑战与成长。作者分享了从软件安装问题到技术工具掌握的心路历程,并强调了心态与自驱力的重要性。通过Python编程、通义灵码等工具的学习,以及对教学设计的深刻反思。
118 5
|
5月前
|
Web App开发 人工智能 JSON
Windows版来啦!Qwen3+MCPs,用AI自动发布小红书图文/视频笔记!
上一篇用 Qwen3+MCPs实现AI自动发小红书的最佳实践 有超多小伙伴关注,同时也排队在蹲Windows版本的教程。
778 1

热门文章

最新文章