PYTHON银行机器学习:回归、随机森林、KNN近邻、决策树、高斯朴素贝叶斯、支持向量机SVM分析营销活动数据|数据分享(下)

简介: PYTHON银行机器学习:回归、随机森林、KNN近邻、决策树、高斯朴素贝叶斯、支持向量机SVM分析营销活动数据|数据分享

PYTHON银行机器学习:回归、随机森林、KNN近邻、决策树、高斯朴素贝叶斯、支持向量机SVM分析营销活动数据|数据分享(上):https://developer.aliyun.com/article/1492254


基于对我们有用的 WOE 分析变量是:pdays、previous、job、housing、balance、month、duration、poutcome、contact。

在下一步中,我们决定根据 WOE 结果和变量的先前结果删除无用的列。

我们删除的其中一个列是 poutcome,尽管它的 WOE 很高,但我们决定删除它,因为从 prevois 分析中我们看到它有许多未知的观察结果。

在可变持续时间的情况下,我们也可以看到WOE相当大,甚至可以说这个结果有点可疑。我们决定根据 WOE 结果放弃它,因为我们的模型应该根据过去的数据说明是否建议给某个人打电话。

在可变接触的情况下,我们放弃了它,因为对我们来说,接触形式在我们的模型中没有用。

我们还删除了变量 day 因为它对我们没有用,因为这个变量代表天数,而该变量的 WOE 非常小。我们删除的最后一个变量是变量 pdays,尽管这个变量 WOE 的结果非常好,但它对我们来说并不是一个有用的变量。

我们分析中剩下的列:


特征选择和工程


要执行我们的算法,我们首先需要将字符串更改为二进制变量。

data = pd.get_dummies(data=data, columns = \['job', 'marital', 'education' , 'month'\], \
                                   prefix = \['job', 'marital', 'education' , 'month'\])

我们更改了列的名称。

data.head(5)

创建虚拟变量后,我们进行了 Pearson 相关。

age = pearsonr(data\['age'\], data\['y'\])

sns.heatmap(corr

我们选择了数字列来检查相关性。正如我们所看到的,没有相关性。

我们查看因变量和连续变量之间的关系。

pylab.show()


交叉验证


经过所有准备工作,我们终于可以将数据集拆分为训练集和测试集。


算法的实现


逻辑回归

K=5
kf = KFold(n_splits=K, shuffle=True)
logreg = LogisticRegression()
\[\[7872   93\]
 \[ 992   86\]\]

\[\[7919   81\]
 \[ 956   86\]\]

\[\[7952   60\]
 \[ 971   59\]\]

\[\[7871   82\]
 \[1024   65\]\]

\[\[7923   69\]
 \[ 975   75\]\]

决策树

dt2 = tree.DecisionTreeClassifier(random\_state=1, max\_depth=2)
\[\[7988    0\]
 \[1055    0\]\]

\[\[7986    0\]
 \[1056    0\]\]

\[\[7920   30\]
 \[1061   31\]\]

\[\[8021    0\]
 \[1021    0\]\]

\[\[7938   39\]
 \[1039   26\]\]

随机森林

random_forest = RandomForestClassifier
\[\[7812  183\]
 \[ 891  157\]\]

\[\[7825  183\]
 \[ 870  164\]\]

\[\[7774  184\]
 \[ 915  169\]\]

\[\[7770  177\]
 \[ 912  183\]\]

\[\[7818  196\]
 \[ 866  162\]\]

KNN近邻

classifier = KNeighborsClassifier(n_neighbors =13,metric = 'minkowski' , p=2)
print("Mean accuracy: ",accuracyknn/K)
print("The best AUC: ", bestaucknn)
\[\[7952   30\]
 \[1046   15\]\]

\[\[7987   30\]
 \[1010   15\]\]

\[\[7989   23\]
 \[1017   13\]\]

\[\[7920   22\]
 \[1083   17\]\]

\[\[7948   21\]
 \[1052   21\]\]

高斯朴素贝叶斯

kf = KFold(n_splits=K, shuffle=True)
gaussian = GaussianNB()
\[\[7340  690\]
 \[ 682  331\]\]

\[\[7321  633\]
 \[ 699  389\]\]

\[\[7291  672\]
 \[ 693  386\]\]

\[\[7300  659\]
 \[ 714  369\]\]

\[\[7327  689\]
 \[ 682  344\]\]

``````
models = pd.DataFrame({
    'Model': \['KNN', 'Logistic Regression', 
              'Naive Bayes', 'Decision Tree','Random Forest'\],
    'Score': \[ accuracyknn/K, accuracylogreg/K, 
              accuracygnb/K, accuracydt/K, accuracyrf/K\],
    'BestAUC': \[bestaucknn,bestauclogreg,bestaucgnb,
                bestaucdt,bestaucrf\]})

我们看到根据 AUC 值的最佳模型是朴素贝叶斯我们不应该太在意最低的 R2 分数,因为数据非常不平衡(很容易预测 y=0)。在混淆矩阵中,我们看到它预测了漂亮的价值真正值和负值。令我们惊讶的是,决策树的 AUC 约为 50%。


欠采样


我们尝试对变量 y=0 进行欠采样

gTrain, gValid = train\_test\_split

逻辑回归

predsTrain = logreg.predict(gTrainUrandom)

predsTrain = logreg.predict(gTrain20Urandom)

predsTrain = logreg.predict(gTrrandom)

决策树

print("Train AUC:", metrics.roc\_auc\_score(ygTrds))

随机森林

print("Train AUC:", metrics.roc\_auc\_score(ygTr, predsTrain),
      "Valid AUC:", metrics.roc\_auc\_score(ygVd, preds))

KNN近邻

print("Train AUC:", metrics.roc\_auc\_score(ygTrm, predsTrain),
      "Valid AUC:", metrics.roc\_auc\_score(ygVal10, preds))

高斯朴素贝叶斯

print("Train AUC:", metrics.roc\_auc\_score(ygTraom, predsTrain),
      "Valid AUC:", metrics.roc\_auc\_score(ygid, preds))

过采样


我们尝试对变量 y=1 进行过采样

feates = datolist()
print(feures)
feaes.remove('y')

print(gTrainOSM.shape)
(31945, 39)
``````
smt = SMOT
(32345, 39)
``````
smt = SMOT
(32595, 39)
``````
ygTrain10OSM=gTrain10OSM\['y'\]
gTrain10OSM=gTrain10OSM.drop(columns=\['y'\])

逻辑回归

print("Train AUC:", metrics.roc\_auc\_score(ygTrin10SM, predsTrain),
      "Valid AUC:", metrics.roc\_auc\_score(ygValid, preds))

决策树

dt2.fit(,ygTranOS)
predsTrain = dtpreict(TrainOSM)
preds = dt2.predict(gValid)

随机森林

random_forest.fit(rainOSM, ygTranOS)
predsTrain = random_forest.prect(gTraiOSM)
p

KNN近邻

classifier.fit(granOSM, yTanOSM)
predsTrain = classifier.predict(gTaiSM)
preds = classifier.predict(Vaid)

高斯朴素贝叶斯

gaussian.fit(gTriOM, ygrainM)
predsTrain = gaussian.predcti)

结论


我们看到欠采样和过采样变量 y 对 AUC 没有太大帮助。

相关文章
|
21天前
|
安全 API 文件存储
Yagmail邮件发送库:如何用Python实现自动化邮件营销?
本文详细介绍了如何使用Yagmail库实现自动化邮件营销。Yagmail是一个简洁强大的Python库,能简化邮件发送流程,支持文本、HTML邮件及附件发送,适用于数字营销场景。文章涵盖了Yagmail的基本使用、高级功能、案例分析及最佳实践,帮助读者轻松上手。
30 4
|
3月前
|
存储 大数据 索引
解锁Python隐藏技能:构建高效后缀树Suffix Tree,处理大数据游刃有余!
通过构建高效的后缀树,Python程序在处理大规模字符串数据时能够游刃有余,显著提升性能和效率。无论是学术研究还是工业应用,Suffix Tree都是不可或缺的强大工具。
65 6
|
3月前
|
大数据 UED 开发者
实战演练:利用Python的Trie树优化搜索算法,性能飙升不是梦!
在数据密集型应用中,高效搜索算法至关重要。Trie树(前缀树/字典树)通过优化字符串处理和搜索效率成为理想选择。本文通过Python实战演示Trie树构建与应用,显著提升搜索性能。Trie树利用公共前缀减少查询时间,支持快速插入、删除和搜索。以下为简单示例代码,展示如何构建及使用Trie树进行搜索与前缀匹配,适用于自动补全、拼写检查等场景,助力提升应用性能与用户体验。
70 2
|
2月前
|
机器学习/深度学习 数据采集 算法
一个 python + 数据预处理+随机森林模型 (案列)
本文介绍了一个使用Python进行数据预处理和构建随机森林模型的实际案例。首先,作者通过删除不必要的列和特征编码对数据进行了预处理,然后应用随机森林算法进行模型训练,通过GridSearchCV优化参数,最后展示了模型的评估结果。
55 0
|
3月前
|
存储 开发者 Python
从理论到实践:Python中Trie树与Suffix Tree的完美结合,开启编程新篇章!
在编程领域,高效的数据结构对于解决问题至关重要。本文通过一个案例分析,介绍如何在Python中结合使用Trie树(前缀树)和Suffix Tree(后缀树)。案例聚焦于开发具备高效拼写检查和文本相似度检测功能的文本编辑器。首先,通过构建Trie树快速检查单词是否存在;接着,利用Suffix Tree检测文本相似度。尽管Python标准库未直接提供Suffix Tree,但可通过第三方库或自定义实现。本文展示了高级数据结构在实际应用中的强大功能,并强调了理论与实践相结合的重要性。
50 1
|
3月前
|
存储 算法 Python
逆袭之路:掌握Python字典树Trie与后缀树,成为技术圈的耀眼新星!
在编程的征途上,每个人都渴望成为那个能够独当一面、解决复杂问题的技术高手。而掌握高级数据结构,如字典树(Trie)与后缀树(Suffix Tree),无疑是你逆袭路上的重要一步。这些数据结构不仅能够提升你的编码技能,还能让你在解决特定问题时游刃有余,从而在技术圈中脱颖而出,成为那颗耀眼的新星。
37 1
|
3月前
|
存储 算法 搜索推荐
Python进阶必备:字典树Trie与后缀树Suffix Array,效率提升的神器!
在Python编程中,掌握高效的数据结构对于提升程序性能至关重要。本文将深入探讨两种强大的字符串处理数据结构——字典树(Trie)与后缀数组(Suffix Array)。字典树,又称前缀树,适用于自动补全和拼写检查等功能。例如,在文本编辑器中实现自动补全时,字典树能够即时提供单词补全选项。后缀数组则用于存储字符串的所有后缀并按字典序排序,结合最长公共前缀(LCP)数组,可以高效解决许多字符串问题,如查找最长重复子串等。通过实际案例,我们将展示这两种数据结构的强大功能,帮助你在Python编程中更进一步。
74 2
|
28天前
|
机器学习/深度学习 算法 数据挖掘
K-means聚类算法是机器学习中常用的一种聚类方法,通过将数据集划分为K个簇来简化数据结构
K-means聚类算法是机器学习中常用的一种聚类方法,通过将数据集划分为K个簇来简化数据结构。本文介绍了K-means算法的基本原理,包括初始化、数据点分配与簇中心更新等步骤,以及如何在Python中实现该算法,最后讨论了其优缺点及应用场景。
95 4
|
7天前
|
算法
PAI下面的gbdt、xgboost、ps-smart 算法如何优化?
设置gbdt 、xgboost等算法的样本和特征的采样率
22 2
|
24天前
|
机器学习/深度学习 算法 数据挖掘
C语言在机器学习中的应用及其重要性。C语言以其高效性、灵活性和可移植性,适合开发高性能的机器学习算法,尤其在底层算法实现、嵌入式系统和高性能计算中表现突出
本文探讨了C语言在机器学习中的应用及其重要性。C语言以其高效性、灵活性和可移植性,适合开发高性能的机器学习算法,尤其在底层算法实现、嵌入式系统和高性能计算中表现突出。文章还介绍了C语言在知名机器学习库中的作用,以及与Python等语言结合使用的案例,展望了其未来发展的挑战与机遇。
39 1