MaxCompute - ODPS重装上阵 第五弹 - SELECT TRANSFORM

本文涉及的产品
实时计算 Flink 版,5000CU*H 3个月
云原生大数据计算服务MaxCompute,500CU*H 100GB 3个月
EMR Serverless StarRocks,5000CU*H 48000GB*H
简介: MaxCompute(原ODPS)是阿里云自主研发的具有业界领先水平的分布式大数据处理平台, 尤其在集团内部得到广泛应用,支撑了多个BU的核心业务。 MaxCompute除了持续优化性能外,也致力于提升SQL语言的用户体验和表达能力,提高广大ODPS开发者的生产力。

MaxCompute(原ODPS)是阿里云自主研发的具有业界领先水平的分布式大数据处理平台, 尤其在集团内部得到广泛应用,支撑了多个BU的核心业务。 MaxCompute除了持续优化性能外,也致力于提升SQL语言的用户体验和表达能力,提高广大ODPS开发者的生产力。

MaxCompute基于ODPS2.0新一代的SQL引擎,显著提升了SQL语言编译过程的易用性与语言的表达能力。我们在此推出MaxCompute(ODPS2.0)重装上阵系列文章

第一弹 - 善用MaxCompute编译器的错误和警告
第二弹 - 新的基本数据类型与内建函数
第三弹 - 复杂类型
第四弹 - CTE,VALUES,SEMIJOIN

上次向您介绍了CTE,VALUES,SEMIJOIN,本篇向您介绍MaxCompute对其他脚本语言的支持 - SELECT TRANSFORM。

  • 场景1 
    我的系统要迁移到MaxCompute平台上,系统中原来有很多功能是使用脚本来完成的,包括python,shell,ruby等脚本。 要迁移到MaxCompute上,我需要把这些脚本全部都改造成UDF/UDAF/UDTF。改造过程不仅需要耗费时间人力,还需要做一遍又一遍的测试,从而保证改造成的udf和原来的脚本在逻辑上是等价的。我希望能有更简单的迁移方式。

  • 场景2
    SQL比较擅长的是集合操作,而我需要做的事情要对一条数据做更多的精细的计算,现有的内置函数不能方便的实现我想要的功能,而UDF的框架不够灵活,并且Java/Python我都不太熟悉。相比之下我更擅长写脚本。我就希望能够写一个脚本,数据全都输入到我的脚本里来,我自己来做各种计算,然后把结果输出。而MaxCompute平台就负责帮我把数据做好切分,让我的脚本能够分布式执行,负责数据的输入表和输出表的管理,负责JOIN,UNION等关系操作就好了。

上述功能可以使用SELECT TRANSFORM来实现

SELECT TRANSFORM 介绍

此文中采用MaxCompute Studio作展示,首先,安装MaxCompute Studio导入测试MaxCompute项目,创建工程,建立一个新的MaxCompute脚本文件, 如下

5ac16247e0b846b2673b47b462c7d73ac95ecd49

提交作业可以看到执行计划(全部展开后的视图):

9cd7ea0d4e9b11150cbbb81cc9d257da5346338f

Select transform允许sql用户指定在服务器上执行一句shell命令,将上游数据各字段用tab分隔,每条记录一行,逐行输入shell命令的stdin,并从stdout读取数据作为输出,送到下游。Shell命令的本质是调用Unix的一些utility,因此可以启动其他的脚本解释器。包括python,java,php,awk,ruby等。

该命令兼容Hive的Transform功能,可以参考Hive的文档。一些需要注意的点如下:
1. Using 子句指定的是要执行的命令,而非资源列表,这一点和大多数的MaxCompute SQL语法不一样,这么做是为了和hive的语法保持兼容。
2. 输入从stdin传入,输出从stdout传出;
3. 可以配置分隔符,默认使用 \t 分隔列,用换行分隔行;
4. 可以自定义reader/writer,但用内置的reader/writer会快很多
5. 使用自定义的资源(脚本文件,数据文件等),可以使用 set odps.sql.session.resources=foo.sh,bar.txt; 来指定。可以指定多个resource文件,用逗号隔开(因此不允许resource名字中包含逗号和分号)。此外我们还提供了resources子句,可以在using 子句后面指定 resources 'foo.sh', 'bar.txt' 来指定资源,两种方式是等价的(参考“用odps跑测试”的例子);
6. 资源文件会被下载到执行指定命令的工作目录,可以使用文件接口打开./bar.txt文件。

目前odps select transform完全兼容了hive的语法、功能和行为,包括 input/output row format 以及 reader/writer。Hive上的脚本,大部分可以直接拿来运行,部分脚本只需要经过少许改动即可运行。另外我们很多功能都用比hive更高执行效率的语言 (C++) 重构,用以优化性能。

应用场景举例

理论上select transform能实现的功能udtf都能实现,但是select transform比udtf要灵活得多。且select transform不仅支持java和python,还支持shell,perl等其它脚本和工具。 且编写的过程要简单,特别适合adhoc功能的实现。举几个例子:
1. 无中生有造数据

select transform(script) using 'sh' as (data) from
(
    select 'for i in `seq 1 50`; do echo $i; done' as script
) t;

或者使用python

select transform('for i in xrange(1, 51):  print i;') using 'python' as (data);

上面的语句造出一份有50行的数据表,值是从1到50; 测试时候的数据就可以方便造出来了。功能看似简单,但以前是odps的一个痛点,没有方便的办法造数据,就不方便测试以及初学者的学习和探索。当然这也可以通过udtf来实现,但是需要复杂的流程:进入ide->写udtf->打包->add jar/python->create function->执行->drop function->drop resource。
2. awk 用户会很喜欢这个功能

select transform(*) using "awk '//{print $2}'" as (data) from src;

上面的语句仅仅是把value原样输出,但是熟悉awk的用户,从此过上了写awk脚本不写sql的日子
3. 用odps跑测试

select transform(key, value) 
   using 'java -cp a.jar org.junit.runner.JUnitCore MyTestClass' 
   resources 'a.jar' 
from testdata;

或者

set odps.sql.session.resources=a.jar;
select transform(key, value) 
   using 'java -cp a.jar org.junit.runner.JUnitCore MyTestClass' 
from testdata;

这个例子是为了说明,很多java的utility可以直接拿来运行。java和python虽然有现成的udtf框架,但是用select transform编写更简单,并且不需要额外依赖,也没有格式要求,甚至可以实现离线脚本拿来直接就用。
4. 支持其他脚本语言

select transform (key, value) using "perl -e 'while($input = <STDIN>){print $input;}'" from src;

上面用的是perl。这其实不仅仅是语言支持的扩展,一些简单的功能,awk, python, perl, shell 都支持直接在命令里面写脚本,不需要写脚本文件,上传资源等过程,开发过程更简单。另外,由于目前我们计算集群上没有php和ruby,所以这两种脚本不支持。
5. 可以串联着用,使用 distribute by和 sort by对输入数据做预处理

select transform(key, value) using 'cmd2' from 
(
    select transform(*) using 'cmd1' from 
    (
        select * from data distribute by col2 sort by col1
    ) t distribute by key sort by value
) t2;

或者用map,reduce的关键字会让逻辑显得清楚一些

@a := select * from data distribute by col2 sort by col1;
@b := map * using 'cmd1' distribute by col1 sort by col2 from @a;
reduce * using 'cmd2' from @b;

理论上OpenMR的模型都可以映射到上面的计算过程。注意,使用map,reduce,select transform这几个语法其实语义是一样的,用哪个关键字,哪种写法,不影响直接过程和结果。

性能

性能上,SELECT TRANSFORM 与UDTF 各有千秋。经过多种场景对比测试,数据量较小时,大多数场景下select transform有优势,而数据量大时UDTF有优势。由于transform的开发更加简便,所以select transform非常适合做adhoc的数据分析。

UDTF的优势:

  1. UDTF是有类型,而Transform的子进程基于stdin/stdout传输数据,所有数据都当做string处理,因此transform多了一步类型转换;
  2. Transform数据传输依赖于操作系统的管道,而目前管道的buffer仅有4KB,且不能设置, transform读/写 空/满 的pipe会导致进程被挂起;
  3. UDTF的常量参数可以不用传输,而Transform没办法利用这个优化。

SELECT TRANSFORM 的优势:

  1. 子进程和父进程是两个进程,而UDTF是单线程的,如果计算占比比较高,数据吞吐量比较小,可以利用服务器的多核特性
  2. 数据的传输通过更底层的系统调用来读写,效率比java高
  3. SELECT TRANSFORM支持的某些工具,如awk,是natvie代码实现的,和java相比理论上可能会有性能优势。

小结

MaxCompute基于ODPS2.0的SQL引擎,提供了SELECT TRANSFORM功能,可以明显简化对脚本代码的引用,与此同时,也提高了性能!我们推荐您尽量使用SELECT TRANSFORM。

标注

  • 注一,USING 后面的字符串,在后台是直接起的子进程来调起命令,没有起shell,所以shell的某些语法,如输入输出重定向,管道等是不支持的。如果用户需要可以以 shell 作为命令,真正的命令作为数据输入,参考“无中生有造数据”的例子;
  • 注二,JAVA 和 PYTHON 的实际路径,可以从JAVA_HOME 和 PYTHON_HOME 环境变量中得到作业;


本文作者:阿里云高级技术专家 秋鹏
相关实践学习
基于MaxCompute的热门话题分析
本实验围绕社交用户发布的文章做了详尽的分析,通过分析能得到用户群体年龄分布,性别分布,地理位置分布,以及热门话题的热度。
SaaS 模式云数据仓库必修课
本课程由阿里云开发者社区和阿里云大数据团队共同出品,是SaaS模式云原生数据仓库领导者MaxCompute核心课程。本课程由阿里云资深产品和技术专家们从概念到方法,从场景到实践,体系化的将阿里巴巴飞天大数据平台10多年的经过验证的方法与实践深入浅出的讲给开发者们。帮助大数据开发者快速了解并掌握SaaS模式的云原生的数据仓库,助力开发者学习了解先进的技术栈,并能在实际业务中敏捷的进行大数据分析,赋能企业业务。 通过本课程可以了解SaaS模式云原生数据仓库领导者MaxCompute核心功能及典型适用场景,可应用MaxCompute实现数仓搭建,快速进行大数据分析。适合大数据工程师、大数据分析师 大量数据需要处理、存储和管理,需要搭建数据仓库?学它! 没有足够人员和经验来运维大数据平台,不想自建IDC买机器,需要免运维的大数据平台?会SQL就等于会大数据?学它! 想知道大数据用得对不对,想用更少的钱得到持续演进的数仓能力?获得极致弹性的计算资源和更好的性能,以及持续保护数据安全的生产环境?学它! 想要获得灵活的分析能力,快速洞察数据规律特征?想要兼得数据湖的灵活性与数据仓库的成长性?学它! 出品人:阿里云大数据产品及研发团队专家 产品 MaxCompute 官网 https://www.aliyun.com/product/odps&nbsp;
目录
相关文章
|
3月前
|
XML DataWorks 安全
DataWorks产品使用合集之select只显示表头是什么原因
DataWorks作为一站式的数据开发与治理平台,提供了从数据采集、清洗、开发、调度、服务化、质量监控到安全管理的全套解决方案,帮助企业构建高效、规范、安全的大数据处理体系。以下是对DataWorks产品使用合集的概述,涵盖数据处理的各个环节。
|
1月前
|
SQL 存储 分布式计算
ODPS技术架构深度剖析与实战指南——从零开始掌握阿里巴巴大数据处理平台的核心要义与应用技巧
【10月更文挑战第9天】ODPS是阿里巴巴推出的大数据处理平台,支持海量数据的存储与计算,适用于数据仓库、数据挖掘等场景。其核心组件涵盖数据存储、计算引擎、任务调度、资源管理和用户界面,确保数据处理的稳定、安全与高效。通过创建项目、上传数据、编写SQL或MapReduce程序,用户可轻松完成复杂的数据处理任务。示例展示了如何使用ODPS SQL查询每个用户的最早登录时间。
91 1
|
4月前
|
机器学习/深度学习 分布式计算 安全
MaxCompute产品使用合集之如何实现对ODPS中表的变动进行主动获取
MaxCompute作为一款全面的大数据处理平台,广泛应用于各类大数据分析、数据挖掘、BI及机器学习场景。掌握其核心功能、熟练操作流程、遵循最佳实践,可以帮助用户高效、安全地管理和利用海量数据。以下是一个关于MaxCompute产品使用的合集,涵盖了其核心功能、应用场景、操作流程以及最佳实践等内容。
|
4月前
|
消息中间件 分布式计算 DataWorks
MaxCompute产品使用合集之如何在DataWorks中引用MC资源
MaxCompute作为一款全面的大数据处理平台,广泛应用于各类大数据分析、数据挖掘、BI及机器学习场景。掌握其核心功能、熟练操作流程、遵循最佳实践,可以帮助用户高效、安全地管理和利用海量数据。以下是一个关于MaxCompute产品使用的合集,涵盖了其核心功能、应用场景、操作流程以及最佳实践等内容。
|
4月前
|
JSON 分布式计算 大数据
MaxCompute产品使用合集之使用数据服务功能,但发现ODPS数据源不支持,该如何解决
MaxCompute作为一款全面的大数据处理平台,广泛应用于各类大数据分析、数据挖掘、BI及机器学习场景。掌握其核心功能、熟练操作流程、遵循最佳实践,可以帮助用户高效、安全地管理和利用海量数据。以下是一个关于MaxCompute产品使用的合集,涵盖了其核心功能、应用场景、操作流程以及最佳实践等内容。
|
4月前
|
SQL 分布式计算 大数据
MaxCompute操作报错合集之运行DDL任务时出现异常,具体错误是ODPS-0110061,该如何处理
MaxCompute是阿里云提供的大规模离线数据处理服务,用于大数据分析、挖掘和报表生成等场景。在使用MaxCompute进行数据处理时,可能会遇到各种操作报错。以下是一些常见的MaxCompute操作报错及其可能的原因与解决措施的合集。
107 3
|
4月前
|
分布式计算 运维 DataWorks
MaxCompute操作报错合集之用户已在DataWorks项目中,并有项目的开发和运维权限,下载数据时遇到报错,该如何解决
MaxCompute是阿里云提供的大规模离线数据处理服务,用于大数据分析、挖掘和报表生成等场景。在使用MaxCompute进行数据处理时,可能会遇到各种操作报错。以下是一些常见的MaxCompute操作报错及其可能的原因与解决措施的合集。
|
4月前
|
分布式计算 大数据 BI
MaxCompute操作报错合集之返回错误代码ODPS-0110999,是什么原因
MaxCompute是阿里云提供的大规模离线数据处理服务,用于大数据分析、挖掘和报表生成等场景。在使用MaxCompute进行数据处理时,可能会遇到各种操作报错。以下是一些常见的MaxCompute操作报错及其可能的原因与解决措施的合集。
|
4月前
|
SQL 分布式计算 数据处理
SQL 能力问题之MaxCompute(ODPS)SQL有哪些特点
SQL 能力问题之MaxCompute(ODPS)SQL有哪些特点
|
4月前
|
分布式计算 DataWorks 关系型数据库
MaxCompute产品使用合集之如何在DataWorks中实现离线同步多个分表到MC的多级分区表
MaxCompute作为一款全面的大数据处理平台,广泛应用于各类大数据分析、数据挖掘、BI及机器学习场景。掌握其核心功能、熟练操作流程、遵循最佳实践,可以帮助用户高效、安全地管理和利用海量数据。以下是一个关于MaxCompute产品使用的合集,涵盖了其核心功能、应用场景、操作流程以及最佳实践等内容。

热门文章

最新文章

  • 1
    DataWorks操作报错合集之DataWorks任务异常 报错: GET_GROUP_SLOT_EXCEPTION 该怎么处理
    103
  • 2
    DataWorks操作报错合集之DataWorksUDF 报错:evaluate for user defined function xxx cannot be loaded from any resources,该怎么处理
    104
  • 3
    DataWorks操作报错合集之在DataWorks中,任务流在调度时间到达时停止运行,是什么原因导致的
    106
  • 4
    DataWorks操作报错合集之DataWorks ODPS数据同步后,timesramp遇到时区问题,解决方法是什么
    90
  • 5
    DataWorks操作报错合集之DataWorks配置参数在开发环境进行调度,参数解析不出来,收到了 "Table does not exist" 的错误,该怎么处理
    86
  • 6
    DataWorks操作报错合集之DataWorks中udf开发完后,本地和在MaxCompute的工作区可以执行函数查询,但是在datawork里报错FAILED: ODPS-0130071:[2,5],是什么原因
    100
  • 7
    DataWorks操作报错合集之DataWorks提交失败: 提交节点的源码内容到TSP(代码库)失败:"skynet_packageid is null,该怎么解决
    110
  • 8
    DataWorks操作报错合集之DataWorks在同步mysql时报错Code:[Framework-02],mysql里面有个json类型字段,是什么原因导致的
    150
  • 9
    DataWorks操作报错合集之DataWorks集成实例绑定到同一个vpc下面,也添加了RDS的IP白名单报错:数据源配置有误,请检查,该怎么处理
    84
  • 10
    DataWorks操作报错合集之在 DataWorks 中运行了一个 Hologres 表的任务并完成了执行,但是在 Hologres 表中没有看到数据,该怎么解决
    120
  • 相关产品

  • 云原生大数据计算服务 MaxCompute