混合云模式下 MaxCompute + Hadoop 混搭大数据架构实践。

本文涉及的产品
云原生大数据计算服务 MaxCompute,5000CU*H 100GB 3个月
云原生大数据计算服务MaxCompute,500CU*H 100GB 3个月
简介: 除了资源效率和成本的优势外,混合云模式还为斗鱼带来了可量化的成本、增值服务以及额外的专业服务。阿里云的专业团队可以为斗鱼提供技术咨询和解决方案,帮助斗鱼解决业务难题。此外,计算资源的可量化也使得斗鱼能够清晰地了解资源使用情况,为业务决策提供依据。

引言
随着大数据技术的不断发展,企业对于数据处理能力、资源效率和成本控制的需求日益增加。混合云模式作为一种灵活高效的数据处理方案,正逐渐受到企业的青睐。本文将以斗鱼大数据架构的演变为例,详细探讨混合云模式下MaxCompute与Hadoop混搭大数据架构的实践过程,分析其优势与挑战,并总结实施经验。

斗鱼大数据架构的发展历程
初始阶段:Apache Hadoop
斗鱼在2014年中期开始使用大数据,最初采用的是www.angfeng.cn简单的HBase和Hadoop架构。这一阶段的架构主要用于数据存储和基础的数据处理任务。然而,随着业务的发展,数据量急剧增加,Hadoop集群的运维成本和复杂性也随之上升。

升级阶段:Cloudera CDH
为了应对日益复杂的数据处理需求,斗鱼在2015年开始使用Cloudera CDH(Cloudera's Distribution Including Apache Hadoop)来运维大数据集群。CDH提供了丰富的组件和强大的管理功能,使得斗鱼的大数据运维更加高效和可靠。同时,CDH还支持多组件的运维,降低了运维成本,并且集群扩容操作简单,数据安全及环境安全有保障。

转型阶段:阿里云MaxCompute
尽管CDH带来了诸多便利,但斗鱼在发展过程中仍然遇到了资源效率和资源成本的问题。随着业务场景的不断拓展,组件增多,运维成本www.chargev.cn不断上升,集群扩容操作也变得繁琐。为了解决这些问题,斗鱼在2017年下半年开始接触阿里云的大数据产品,并最终选择了MaxCompute(原名ODPS)。

MaxCompute是一种快速、完全托管的TB/PB级数据仓库解决方案,具备强大的数据存储、运维和计算能力。斗鱼选择MaxCompute的原因主要有以下几点:

灵活性高:MaxCompute支持灵活的操作,可以根据业务需求进行快速调整。
运维成本低:相比于自建集群,MaxCompute的运维成本更低,且无需担心集群扩容等问题。
数据安全有保障:阿里云提供了完善的数据安全机制,确保企业数据的安全。
上云过程中的挑战与解决方案
数据安全
数据是企业最宝贵的资源,因此在上云过程中,数据安全是首要考虑的问题。斗鱼采取了以下措施来保障数据安全:

原始数据备份:阿里云使用原始数据进行备份,确保数据不会因意外而丢失。
安全访问控制:增加账号访问IP白名单及审计,确保只有公司内部人员才能访问数据。
Kerberos安全认证:www.autove.cn利用Kerberos安全认证机制,提高数据访问的安全性。
数据同步
由于云上云下存在海量数据,如何快速准确地同步数据是斗鱼面临的另一个挑战。斗鱼采用了基于DataX的数据同步工具,并结合网络专线能力提升同步效率。同时,利用数据校验工具对同步任务和数据量进行校验,确保数据的准确性和一致性。

业务迁移
将云下的历史业务安全迁移到云上是斗鱼上云过程中的重要一环。斗鱼在业务迁移过程中遵循了以下原则:

不引起故障:通过业务场景测试和数据质量检验,确保迁移过程中不会引发故障。
迁移成本低:尽量减少业务侧的改动,降低迁移成本。
操作一致性:确保云上云下操作的一致性,以便在需要时能够灵活切换。
混合云模式的优势
资源效率提升
混合云模式显著提升了斗鱼的资源效率。从自建集群到MaxCompute的转变,使得斗鱼在资源使用上更加灵活和高效。具体表现在以下几个方面:

预算和采购周期缩短:从提前半年或一年提预算到按量付费,采购耗时从1到3个月缩短为资源可以无限使用。
机房部署效率提高:从机房上架1周以上www.mcells.cn到无机房概念,大大提升了部署效率。
成本节约:相比于IDC自建集群,MaxCompute每年大概节约1000万元成本,并保障集群零故障。
成本降低
混合云模式还帮助斗鱼降低了资源成本。通过按需付费和资源共享,斗鱼能够更加合理地利用资源,避免资源的闲置和浪费。同时,阿里云的专业服务也为斗鱼提供了技术支持和解决方案,帮助斗鱼降低了运维成本。

增值服务与专业服务
除了资源效率和成本的优势外,混合云模式还为斗鱼带来了可量化的成本、增值服务以及额外的专业服务。阿里云的专业团队可以为斗鱼提供技术咨询和解决方案,帮助斗鱼解决业务难题。此外,计算资源的可量化也使得斗鱼能够清晰地了解资源使用情况,为业务决策提供依据。

相关实践学习
基于MaxCompute的热门话题分析
本实验围绕社交用户发布的文章做了详尽的分析,通过分析能得到用户群体年龄分布,性别分布,地理位置分布,以及热门话题的热度。
SaaS 模式云数据仓库必修课
本课程由阿里云开发者社区和阿里云大数据团队共同出品,是SaaS模式云原生数据仓库领导者MaxCompute核心课程。本课程由阿里云资深产品和技术专家们从概念到方法,从场景到实践,体系化的将阿里巴巴飞天大数据平台10多年的经过验证的方法与实践深入浅出的讲给开发者们。帮助大数据开发者快速了解并掌握SaaS模式的云原生的数据仓库,助力开发者学习了解先进的技术栈,并能在实际业务中敏捷的进行大数据分析,赋能企业业务。 通过本课程可以了解SaaS模式云原生数据仓库领导者MaxCompute核心功能及典型适用场景,可应用MaxCompute实现数仓搭建,快速进行大数据分析。适合大数据工程师、大数据分析师 大量数据需要处理、存储和管理,需要搭建数据仓库?学它! 没有足够人员和经验来运维大数据平台,不想自建IDC买机器,需要免运维的大数据平台?会SQL就等于会大数据?学它! 想知道大数据用得对不对,想用更少的钱得到持续演进的数仓能力?获得极致弹性的计算资源和更好的性能,以及持续保护数据安全的生产环境?学它! 想要获得灵活的分析能力,快速洞察数据规律特征?想要兼得数据湖的灵活性与数据仓库的成长性?学它! 出品人:阿里云大数据产品及研发团队专家 产品 MaxCompute 官网 https://www.aliyun.com/product/odps 
相关文章
|
2天前
|
SQL 分布式计算 运维
如何对付一个耗时6h+的ODPS任务:慢节点优化实践
本文描述了大数据处理任务(特别是涉及大量JOIN操作的任务)中遇到的性能瓶颈问题及其优化过程。
|
16天前
|
分布式计算 资源调度 Hadoop
Hadoop入门基础(五):Hadoop 常用 Shell 命令一网打尽,提升你的大数据技能!
Hadoop入门基础(五):Hadoop 常用 Shell 命令一网打尽,提升你的大数据技能!
|
17天前
|
存储 SQL 分布式计算
Hadoop生态系统概述:构建大数据处理与分析的基石
【8月更文挑战第25天】Hadoop生态系统为大数据处理和分析提供了强大的基础设施和工具集。通过不断扩展和优化其组件和功能,Hadoop将继续在大数据时代发挥重要作用。
|
18天前
|
分布式计算 搜索推荐 物联网
大数据及AI典型场景实践问题之通过KafKa+OTS+MaxCompute完成物联网系统技术重构如何解决
大数据及AI典型场景实践问题之通过KafKa+OTS+MaxCompute完成物联网系统技术重构如何解决
|
18天前
|
资源调度 分布式计算 Hadoop
揭秘Hadoop Yarn背后的秘密!它是如何化身‘资源大师’,让大数据处理秒变高效大戏的?
【8月更文挑战第24天】在大数据领域,Hadoop Yarn(另一种资源协调者)作为Hadoop生态的核心组件,扮演着关键角色。Yarn通过其ResourceManager、NodeManager、ApplicationMaster及Container等组件,实现了集群资源的有效管理和作业调度。当MapReduce任务提交时,Yarn不仅高效分配所需资源,还能确保任务按序执行。无论是处理Map阶段还是Reduce阶段的数据,Yarn都能优化资源配置,保障任务流畅运行。此外,Yarn还在Spark等框架中展现出灵活性,支持不同模式下的作业执行。未来,Yarn将持续助力大数据技术的发展与创新。
27 2
|
18天前
|
人工智能 分布式计算 架构师
大数据及AI典型场景实践问题之基于MaxCompute构建Noxmobi全球化精准营销系统如何解决
大数据及AI典型场景实践问题之基于MaxCompute构建Noxmobi全球化精准营销系统如何解决
|
19天前
|
存储 监控 安全
大数据架构设计原则:构建高效、可扩展与安全的数据生态系统
【8月更文挑战第23天】大数据架构设计是一个复杂而系统的工程,需要综合考虑业务需求、技术选型、安全合规等多个方面。遵循上述设计原则,可以帮助企业构建出既高效又安全的大数据生态系统,为业务创新和决策支持提供强有力的支撑。随着技术的不断发展和业务需求的不断变化,持续优化和调整大数据架构也将成为一项持续的工作。
|
11天前
|
SQL 存储 分布式计算
MaxCompute 入门:大数据处理的第一步
【8月更文第31天】在当今数字化转型的时代,企业和组织每天都在产生大量的数据。有效地管理和分析这些数据变得至关重要。阿里云的 MaxCompute(原名 ODPS)是一个用于处理海量数据的大规模分布式计算服务。它提供了强大的存储能力以及丰富的数据处理功能,让开发者能够快速构建数据仓库、实时报表系统、数据挖掘等应用。本文将介绍 MaxCompute 的基本概念、架构,并演示如何开始使用这一大数据处理平台。
63 0
|
14天前
|
SQL 分布式计算 数据可视化
基于Hadoop的大数据可视化方法
【8月更文第28天】在大数据时代,有效地处理和分析海量数据对于企业来说至关重要。Hadoop作为一个强大的分布式数据处理框架,能够处理PB级别的数据量。然而,仅仅完成数据处理还不够,还需要将这些数据转化为易于理解的信息,这就是数据可视化的重要性所在。本文将详细介绍如何使用Hadoop处理后的数据进行有效的可视化分析,并会涉及一些流行的可视化工具如Tableau、Qlik等。
41 0
|
18天前
|
人工智能 分布式计算 大数据
大数据及AI典型场景实践问题之“开发者藏经阁计划”的定义如何解决
大数据及AI典型场景实践问题之“开发者藏经阁计划”的定义如何解决
下一篇
DDNS