数据分析行业招聘职位分析报告--基于拉勾网

简介: 项目背景大数据时代的到来让数据在公司决策上发挥了越来越大的作用,数据分析师也成为了各大企业的标配,那么各大企业又会愿意花多少代价来为数据买单呢?本文将通过从拉勾网爬取到的职位信息来展现「数据分析」职位究竟「钱」景如何:哪些城市更需要数据分析人才,除了北上广深还有没有其他城市给我们惊喜;哪些行业更需要数据分析人才,薪资如何;目前数据分析职位要求的工作经验和学历是怎样:我工作%n年了,该拿到多少工资才不至于拖后腿了。

项目背景

大数据时代的到来让数据在公司决策上发挥了越来越大的作用,数据分析师也成为了各大企业的标配,那么各大企业又会愿意花多少代价来为数据买单呢?本文将通过从拉勾网爬取到的职位信息来展现「数据分析」职位究竟「钱」景如何:

  • 哪些城市更需要数据分析人才,除了北上广深还有没有其他城市给我们惊喜;
  • 哪些行业更需要数据分析人才,薪资如何;
  • 目前数据分析职位要求的工作经验和学历是怎样:
  • 我工作%n年了,该拿到多少工资才不至于拖后腿了。

使用工具

Python/Tableau

  • 数据获取主要使用urllib/json包,具体可参见文章Python爬虫拉勾网
  • 数据清洗处理使用了pandas包,可视化使用了seaborn包。

数据来源

本文使用数据全部来自于拉勾网,职位搜索关键词「数据分析」,获取时间2018/3/8,字段解释如下:

字段 内容
city 城市
indusryField 行业
workYear 工作经验
education 学历要求
companySize 公司规模
salary 薪资
positionId 职位编号

项目内容

导入所需包

import pandas as pd
import seaborn as sns

主题/字体设置

  • 设置图表主题;
  • 指定字体解决图表中文显示为方块的问题。
sns.set_style('ticks',{'font.sans-serif':['simhei','Arial']})

数据清洗

  • 根据职位编号(positionId)进行去重,去重之后共计2298条招聘记录;
  • 薪资(salary)字段格式为10K-20K,替换掉「k」然后根据「-」进行分列获得薪资上限与下限,最后取平均值作为职位参考薪资;
  • 行业分类(industryField)包含大类和小类部分,根据「」,「」和空格分列取大类用于后期分析。
sns.set_style('ticks',{'font.sans-serif':['simhei','Arial']})
#中文显示问题

df = pd.read_excel('~\LagouSpider.xls',encoding='utf-8')
#加载数据

df = df.drop_duplicates(['positionId'])
#根据positionId进行去重

df = df.reset_index(drop=True)  
#重置索引

df['salary'] = df['salary'].str.replace('k','')
df['salary'] = df['salary'].str.replace('K','')
#去掉大小写k

df['salary'] = df['salary'].str.split('-')
#通过'-'完成分列

df['salary'] = (df['salary'].str[1].astype(int)+df['salary'].str[0].astype(int))/2
#取平均值作为参考薪资

df['industryField'] = df['industryField'].str.split(',| ',1).str[0]
df['industryField'] = df['industryField'].str.split(u'、',1).str[0]

哪个城市最需要数据分析师?

根据城市分类来看,北上广深四城毫无意外念的领先,北京更是优势巨大,这与很多互联网以及金融企业选择在北京作为总部相关,当然也可能与拉勾网本身就是北京的一家企业,在北京业务开展更广有关系。
在二线城市中,杭州优势明显,「阿里巴巴」,「网易」加分不少,与广州已经差距很小了。
成都目前在招岗位60个,与其他城市拉开差距,在常年以来「成都与武汉谁是中西部最强城市?」似乎可以加上1分。

sns.countplot(x = 'city' , data = df)
img_ecdc8bef44e5f8bf70d7bf227b2c9b68.png
image.png

大公司OR小公司?

这个问题也是大多少求职者所考虑的问题,大公司更加稳定、制度健全,但是相比小公司可能晋升困难一些,从薪资整体水平来看,也可以看出,大公司更愿意给出高工资,但同时我们也能看到,小公司同样也能给出50K-100K这样的薪资。
所以你是愿意去大公司拧螺丝,还是去小公司造飞机,当然大部分时候拧螺丝还能赚的更多。

sns.boxplot(x = df['companySize'],y = df['salary'],
                order = [u'少于15人',u'15-50人',u'50-150人',u'150-500人',u'500-2000人',u'2000人以上'])
img_3765425c78aa1162b71632d12546d999.png
image.png

哪个城市薪资最高?

从各个城市薪资来看,北京依然遥遥领先,薪资中位数已逾20K,上海/深圳/杭州相差不大,都是15K左右的水平,当然如果对比一下上海/深圳的房价,杭州对于数据分析师来说似乎是个不错的落户选择。广州在薪资这阶段掉队明显,与其他二线城市相当。

sns.boxplot(x = 'city',y = 'salary',data = df)
img_1373c20ccb337c79d199d01a2d6a811a.png
image.png

哪个行业最需要数据分析师?

从行业分布来看,移动互联网占据了半壁江山,招聘职位数是金融行业3倍,电子商务行业的5倍,另外由于拉勾网本身就是一家专注于互联网招聘的企业,这也让移动互联网在这份榜单上的优势愈加明显。
除了我们熟知的电子商务/金融行业,数据服务类公司也有较大的需求,数据服务会不会成为以后行业的一块大饼呢?最近几年大火的O2O也有较大的需求,去送个外卖也不错~

sns.boxplot(x = 'salary',y = 'industryField',data = df)
img_e1ca18841e09f9358c46132b791b7e04.png
image.png

数据分析在各行薪资是个什么水平?

各个行业薪资水平来看,金融和电子商务行业薪资中位数相差无几,不过金融行业薪资整体薪资来看要高于电子商务,去金融行业求个职似乎还是门槛要高点。
移动互联网行业整体薪资维持在11K-22K之间,中位数16K,要高于金融行业。其他行业的由于样本量偏少,就不展开讨论了。

sns.countplot(y = 'industryField',data = df)
img_a793f1faa589193ebe84dad46942f48b.png
image.png

如果我是本科/硕士学历,我该去哪个城市?

在对各个学历的需求上来看,要求为本科的基本符合整体趋势,在2298个招聘职位中要求为本科的达到了1969个,看来本科已经成为了数据分析师的一个基本门槛。
在遍地211/985的北京,大专似乎很不值钱,在四个一线城市中,薪资为最低。
但我们看要求为硕士的,薪资领先的是广州/深圳,我们都知道,相比北京/上海,广州/深圳的高校资源相对匮乏,尤其是深圳,这样的薪资也体现了广州/深圳对于高学历人才的需求,所以,如果你硕士毕业,想要更高的工资,广州/深圳应该是不错的选择。

sns.factorplot(x="city", y = 'salary' , col="education",col_wrap=2,
                      data=df[df['education']!=u'博士'], kind="box",
                      size=4, aspect=1);
img_8fe67653e3f222b2a8407f02e70fc86f.png
image.png

我工作%n年了,应该拿到多少薪资才不至于拖后腿了?

从工作年限来看,都是一个整体上升趋势,3-5年会有一个较大的涨幅,5-10年工作经验的工资基本维持在20K-30K之间,深圳一家公司开出了60K-100K的工资,羡慕不已,传送门

sns.factorplot(x="workYear", y = 'salary' , col="city",col_wrap=2,
                       data=df.loc[df['city'].isin([u'北京',u'上海',u'广州',u'深圳',u'杭州',u'成都'])], 
                       order = [u'应届毕业生',u'1年以下',u'1-3年',u'3-5年',u'5-10年',u'10年以上',u'不限'],
                       kind="box",size=4, aspect=1.3)
img_9cc5b7f3573da4e028850e7296c7f59d.png
image.png

总结

  • 数据分析整个行业薪资普遍不低,而且上升空间也是足够的,年入百万也不是痴人说梦;
  • 城市分部来看,北上深优势明显,无论是从薪资还是机会都优于其他城市, 由于「阿里」、「网易」的存在,杭州也有不错表现,然后广州掉队明显;
  • 公司规模大小与薪资成正比,越大的公司给出的工资也更高;
  • 学历要求来看,本科学历是基本,硕士学历在广州/深圳更容易拿到高工资;
  • 工作年限上,从业3年之后会有一个较大涨幅。

写在最后

这篇文章算是对数据分析行业的一次简单的概述,也算是自己第一次完成了「数据获取-清洗-分析」的一整套流程,对于求职者或者想踏入数据分析行业的人来说,可以当作参考,希望能有一点帮助。
当然还有很多需要完善和改进的地方:

  • 样本量偏少而且偏向严重,少了点说服力;
  • 只进行了简单的描述性分析,没有更深入的探索;
  • 少了职位描述及职位要求,本来想做的词云也夭折了。

继续努力~

最后也祝各位早日拿到高工资~

目录
相关文章
|
3月前
|
数据采集 存储 数据挖掘
【优秀python数据分析案例】基于Python书旗网小说网站数据采集与分析的设计与实现
本文介绍了一个基于Python的书旗网小说网站数据采集与分析系统,通过自动化爬虫收集小说数据,利用Pandas进行数据处理,并通过Matplotlib和Seaborn等库进行数据可视化,旨在揭示用户喜好和市场趋势,为图书出版行业提供决策支持。
323 6
【优秀python数据分析案例】基于Python书旗网小说网站数据采集与分析的设计与实现
|
3月前
|
机器学习/深度学习 数据采集 数据可视化
基于爬虫和机器学习的招聘数据分析与可视化系统,python django框架,前端bootstrap,机器学习有八种带有可视化大屏和后台
本文介绍了一个基于Python Django框架和Bootstrap前端技术,集成了机器学习算法和数据可视化的招聘数据分析与可视化系统,该系统通过爬虫技术获取职位信息,并使用多种机器学习模型进行薪资预测、职位匹配和趋势分析,提供了一个直观的可视化大屏和后台管理系统,以优化招聘策略并提升决策质量。
188 4
|
3月前
|
数据采集 机器学习/深度学习 数据可视化
【优秀python web系统毕设】基于python的全国招聘数据分析可视化系统,包括随机森林算法
本文介绍了一个基于Python的全国招聘数据分析可视化系统,该系统利用数据挖掘技术、随机森林算法和数据可视化技术,从招聘网站抓取数据,进行处理、分析和预测,帮助用户洞察招聘市场,为求职者和企业提供决策支持。
147 2
|
1月前
|
数据挖掘 UED
ChatGPT数据分析——探索性分析
ChatGPT数据分析——探索性分析
|
1月前
|
数据可视化 数据挖掘 数据处理
ChatGPT数据分析应用——热力图分析
ChatGPT数据分析应用——热力图分析
|
1月前
|
数据挖掘
ChatGPT在常用的数据分析方法中的应用(分组分析)
ChatGPT在常用的数据分析方法中的应用(分组分析)
|
1月前
|
机器学习/深度学习 数据采集 数据可视化
如何理解数据分析及数据的预处理,分析建模,可视化
如何理解数据分析及数据的预处理,分析建模,可视化
53 0
|
1月前
|
数据挖掘
ChatGPT在常用的数据分析方法中的应用(对比分析)
ChatGPT在常用的数据分析方法中的应用(对比分析)
|
2月前
|
机器学习/深度学习 人工智能 数据挖掘
数据分析师是在多个行业中专门从事数据搜集、整理和分析的专业人员
数据分析师是在多个行业中专门从事数据搜集、整理和分析的专业人员
40 3
|
3月前
|
前端开发 Java JSON
Struts 2携手AngularJS与React:探索企业级后端与现代前端框架的完美融合之道
【8月更文挑战第31天】随着Web应用复杂性的提升,前端技术日新月异。AngularJS和React作为主流前端框架,凭借强大的数据绑定和组件化能力,显著提升了开发动态及交互式Web应用的效率。同时,Struts 2 以其出色的性能和丰富的功能,成为众多Java开发者构建企业级应用的首选后端框架。本文探讨了如何将 Struts 2 与 AngularJS 和 React 整合,以充分发挥前后端各自优势,构建更强大、灵活的 Web 应用。
59 0
下一篇
无影云桌面