大数据和机器学习 > 大数据计算 MaxCompute > 正文

MaxCompute 使用总结-初级篇

简介: 本文面向的读者是要使用MaxCompute sql进行一些数据查询和挖掘,或者要使用MaxCompute udf自定义函数的用户。
+关注继续查看

转载自jiyi
引言

本文面向的读者是要使用MaxCompute sql进行一些数据查询和挖掘,或者要使用MaxCompute udf自定义函数的用户。本文试图达到三个目标:(1)针对应用管理者来讲,看完本文后可以比较清晰的去管理自己的应用;(2)针对MaxCompute sql使用者来讲,本文在sql语句的内建函数使用以及sql语句加速方面,给出了一些例子;(3)针对MaxCompute UDF使用者和开发者来讲,本文提供了一个UDF函数创建的完整例子并给出了无IDE依赖的java工程,可直接在公司内部机器上编译使用。具体的内容安排如下。

  • 第1节介绍了ODPS数据上传下载的一些知识,通过本章你可以将数据上传到ODPS中亦可将ODPS中的数据下载到本地。
  • 第2节阐述了ODPS sql语句中一些内建函数的使用以及sql语句加速的一些技巧。
  • 第3节阐述了ODPS UDF函数的创建以及使用的整个例子,欢迎大家一起贡献常用的UDF函数。
  • 第4节中介绍了如何实时的进行在线以及离线的任务监控。
  • 第5节中介绍了如何进行MaxCompute存储优化。

1.MaxCompute数据上传下载

使用Datahub ,对表格进行上传/下载

更多上传下载相关参数请查看

https://help.aliyun.com/document_detail/27849.html?spm=5176.doc27864.6.154.k7rmpf

2.MaxCompute sql语句

sql语句样例

在MaxCompute sql界面上可以很方便的执行sql语句,以下简要介绍几个MaxCompute上内建函数的使用。更多的内建函数请参考https://help.aliyun.com/document_detail/27864.html

聚类采样

create table A_sample as

select `(sample_flag)?+.+` from

(

select *, cluster_sample(20, 1) over (partition by A_key1) as sample_flag

from A

) sample

where sample_flag=true;

行记录合并

create table A_group as

select A_key1, wm_concat(',', A_key2) as A_key2s from A

group by A_key1;

计算分割串个数

create table A_count_key_size as

select *, size(split(A_key, ',')) as A_key_count

from A;

行记录序号打标

create table A_rowno as

select *, ROW_NUMBER() OVER(PARTITION BY 1 order by A_key) as row_no

from A;

sql单语句加速

如何控制ODPS原生sql语句分配的节点个数?有以下两种方法可以设置。
1.通过参数设置:
set odps.sql.mapper.merge.limit.size=64;
set odps.sql.mapper.split.size=256;
这两个sql参数可以控制分配的节点个数,更多sql参数请参考https://yq.aliyun.com/articles/60898。如果把参数设到了极限,sql分配的节点个数还是不能满足需求的话,怎么办?没事,我们还可以将表格进行分区,如下所述。
2. 对表格进行分区:
create table A_rowno as
select A_key, ROW_NUMBER() OVER(PARTITION BY 1 order by A_key) as row_no
from A;

create table A_pt
(A_key string
)
partitioned by (row_remainder bigint);

insert overwrite table A_pt partition(row_remainder)
select A_key, row_no%2000 as row_remainder
from A_rowno;

为了描述的方便,我将各个步骤分开来写,实际操作中可以将一些合并起来写。

3.MaxCompute UDF


编写UDF参考https://yq.aliyun.com/articles/61887


4.MaxCompute数据和任务的线上监控

日常任务上线后,我们必须做好监控措施,这样才能在任务发生异常后进行及时地发现错误然后纠正恢复。实时的任务监控可以访问网站http://data.aliyun.com 里的大数据开发套件进行任务资源占用的监控,并同时访问任务返回的logview进行查看。

5.MaxCompute存储优化

随着应用中人数以及业务的不断增加,ODPS应用里会有很多表的生成,这时候需要应用的负责人去做好ODPS的存储优化https://yq.aliyun.com/articles/61532?spm=5176.100240.searchblog.22.anssTb,否则每周推送过来的应用资源消耗周账单中的健康度会非常低,也比较浪费MaxCompute的存储资源。

欢迎加入“数加·MaxCompute购买咨询”钉钉群(群号: 11782920)进行咨询,群二维码如下:

96e17df884ab556dc002c912fa736ef6558cbb51

版权声明:本文内容由阿里云实名注册用户自发贡献,版权归原作者所有,阿里云开发者社区不拥有其著作权,亦不承担相应法律责任。具体规则请查看《阿里云开发者社区用户服务协议》和《阿里云开发者社区知识产权保护指引》。如果您发现本社区中有涉嫌抄袭的内容,填写侵权投诉表单进行举报,一经查实,本社区将立刻删除涉嫌侵权内容。

相关文章
阿里云-数仓 数据开发神器-ODPS(MaxCompute)的组成对象
阿里云-数仓 数据开发神器-ODPS(MaxCompute)的组成对象
364 0
MaxCompute - ODPS重装上阵 第九弹 - 脚本模式与参数视图
MaxCompute提供了新的脚本模式与参数化视图,可以明显提高开发者的编程效率,提高代码的可重用性,与此同时,也提高了性能!
1646 0
MaxCompute - ODPS重装上阵 第八弹 - 动态类型函数
MaxCompute自定义函数的参数和返回值不够灵活,是数据开发过程中时常被提及的问题。Hive 提供给了 GenericUDF 的方式,通过调用一段用户代码,让用户来根据参数类型决定返回值类型。MaxCompute 出于性能、安全性等考虑,没有支持这种方式。
1816 0
MaxCompute - ODPS重装上阵 第七弹 - Grouping Set, Cube and Rollup
MaxCompute中的GROUPING SETS功能是SELECT语句中GROUP BY子句的扩展。允许采用多种方式对结果分组,而不必使用多个SELECT语句来实现这一目的。这样能够使MaxCompute的引擎给出更有的执行计划,从而提高执行性能。
5939 0
MaxCompute - ODPS重装上阵 第六弹 - User Defined Type
MaxCompute中的UDT(User Defined Type)功能支持在SQL中直接引用第三方语言的类或者对象,获取其数据内容或者调用其方法 。
3101 0
maxCompute(ODPS)问题排查思路
在使用maxCompute的过程中难免会遇到问题,本文意在帮助遇到问题的人快速解决问题
2777 0
DLA支持MaxCompute(ODPS)数据源
DLA支持MaxCompute(ODPS)数据源 1. 概述 支持功能包括: MaxCompute(ODPS)的数据查询,目前复杂数据类型以字符串形式返回; 一条命令同步对应project下的所有表。
1561 0
MaxCompute - ODPS重装上阵 第五弹 - SELECT TRANSFORM
MaxCompute(原ODPS)是阿里云自主研发的具有业界领先水平的分布式大数据处理平台, 尤其在集团内部得到广泛应用,支撑了多个BU的核心业务。 MaxCompute除了持续优化性能外,也致力于提升SQL语言的用户体验和表达能力,提高广大ODPS开发者的生产力。
3543 0
MaxCompute(原ODPS)是一项面向分析的大数据计算服务,它以Serverless架构提供快速、全托管的在线数据仓库服务,消除传统数据平台在资源扩展性和弹性方面的限制,最小化用户运维投入,使您经济并高效的分析处理海量数据。
+关注
隐林
阿里云大数据产品专家,擅长MaxCompute、机器学习、分布式、可视化、人工智能等大数据领域;
文章
问答
视频
相关电子书
更多
云端大规模视频分析:MaxCompute在视觉计算中的应用
立即下载
低代码开发师(初级)实战教程
立即下载
阿里巴巴DevOps 最佳实践手册
立即下载