【AI超级美发师】深度学习算法打造染发特效(附代码)

简介: 如今,在类似天天P图、美图秀秀等手机APP中,给指定照片或视频中的人物更换头发颜色已经是再正常不过的事情了。那么本文便介绍了该功能背后如AI头发分割模块、头发换色、颜色增强与修正模块等技术原理(附代码)。

【新智元导读】如今,在类似天天P图、美图秀秀等手机APP中,给指定照片或视频中的人物更换头发颜色已经是再正常不过的事情了。那么本文便介绍了该功能背后如AI头发分割模块、头发换色、颜色增强与修正模块等技术原理(附代码)。

首先,为照片或视频中人物换发色的算法流程如下图所示:

image

AI头发分割模块

基于深度学习的目标分割算法已经比较成熟,比较常用的有FCN,SegNet,UNet,PspNet,DenseNet等等。这里我们使用Unet网络来进行头发分割,具体可以参考如下链接:点击打开链接Unet头发分割代码如下:

def get_unet_256(input _shape=(256,256,3),
                 num_classes=1):
    inputs=Input(shape=input_shape)
    #256

    down0 = Conv2D(32,(3,3), padding='same')(inputs)
    down0 = BatchNormalization()(down0)
    down0 = Activation('relu')(down0)
    down0 = Conv2D(32,(3,3), padding='same')(down0)
    down0 = BatchNormalization()(down0)
    down0 = Activation('relu')(down0)
    down0_pool = MaxPooling2D((2,2),strides=(2,2))(down0)    
    #128

    down1 = Conv2D(64,(3,3), padding='same')(down0_pool)
    down1 = BatchNormalization()(down1)
    down1 = Activation('relu')(down1)
    down1 = Conv2D(64,(3,3), padding='same')(down1)
    down1 = BatchNormalization()(down1)
    down1 = Activation('relu')(down1)
    down1_pool = MaxPooling2D((2,2),strides=(2,2))(down1)
    #64

    down2 = Conv2D(128,(3,3), padding='same')(down1_pool)
    down2 = BatchNormalization()(down2)
    down2 = Activation('relu')(down2)
    down2 = Conv2D(128,(3,3), padding='same')(down2)
    down2 = BatchNormalization()(down2)
    down2 = Activation('relu')(down2)
    down2_pool = MaxPooling2D((2,2),strides=(2,2))(down2)
    #32

    down3 = Conv2D(256,(3,3), padding='same')(down2_pool)
    down3 = BatchNormalization()(down3)
    down3 = Activation('relu')(down3)
    down3 = Conv2D(256,(3,3), padding='same')(down3)
    down3 = BatchNormalization()(down3)
    down3 = Activation('relu')(down3)
    down3_pool = MaxPooling2D((2,2),strides=(2,2))(down3)
    #16

    down4 = Conv2D(512,(3,3), padding='same')(down3_pool)
    down4 = BatchNormalization()(down4)
    down4 = Activation('relu')(down4)
    down4 = Conv2D(512,(3,3), padding='same')(down4)
    down4 = BatchNormalization()(down4)
    down4 = Activation('relu')(down4)
    down4_pool = MaxPooling2D((2,2),strides=(2,2))(down4)
    #8

    center = Conv2D(1024,(3,3), padding='same')(down4_pool)
    center = BatchNormalization()(center)
    center = Activation('relu')(center)
    center = Conv2D(1024,(3,3), padding='same')(center)
    center = BatchNormalization()(center)
    center = Activation('relu')(center)
    #center

    up4 = UpSamepling2D((2,2))(center)
    up4 = Concatenate([down4,up4],axis=3)
    up4 = Conv2D(512,(3,3),padding='same')(up4)
    up4 = BatchNormalization()(up4)
    up4 = Activation('relu')(up4)
    up4 = Conv2d(512,(3,3),padding='same')(up4)
    up4 = BatchNormalization()(up4)
    up4 = Activation('relu')(up4)
    #16

    up3 = UpSamepling2D((2,2))(up4)
    up3 = Concatenate([down4,up4],axis=3)
    up3 = Conv2D(256,(3,3),padding='same')(up3)
    up3 = BatchNormalization()(up3)
    up3 = Activation('relu')(up3)
    up3 = Conv2d(256,(3,3),padding='same')(up3)
    up3 = BatchNormalization()(up3)
    up3 = Activation('relu')(up3)
    #32

    up2 = UpSamepling2D((2,2))(up3)
    up2 = Concatenate([down4,up4],axis=3)
    up2 = Conv2D(128,(3,3),padding='same')(up2)
    up2 = BatchNormalization()(up2)
    up2 = Activation('relu')(up2)
    up2 = Conv2d(128,(3,3),padding='same')(up2)
    up2 = BatchNormalization()(up2)
    up2 = Activation('relu')(up2)
    #64

    up1 = UpSamepling2D((2,2))(up2)
    up1 = Concatenate([down4,up4],axis=3)
    up1 = Conv2D(64,(3,3),padding='same')(up1)
    up1 = BatchNormalization()(up1)
    up1 = Activation('relu')(up1)
    up1 = Conv2d(64,(3,3),padding='same')(up1)
    up1 = BatchNormalization()(up1)
    up1 = Activation('relu')(up1)
    #128

    up0 = UpSamepling2D((2,2))(up1)
    up0 = Concatenate([down4,up4],axis=3)
    up0 = Conv2D(32,(3,3),padding='same')(up0)
    up0 = BatchNormalization()(up0)
    up0 = Activation('relu')(up0)
    up0 = Conv2d(32,(3,3),padding='same')(up0)
    up0 = BatchNormalization()(up0)
    up0 = Activation('relu')(up0)
    #256

    classify = Con2D(num_classes,(1,1)),activation='sigmoid')(up0)
    model = Model(input=inputs,outputs=classify)
 #model.compile(optimizer=RMSprop(lr=0.0001),loss=bce_dice_loss,metrices=[dice_coeff])

return model

分割效果举例如下:

image

使用的训练和测试数据集合大家自己准备即可。

发色更换模块

这个模块看起来比较简单,实际上却并非如此。 这个模块要细分为:

①头发颜色增强与修正模块;
②颜色空间染色模块;
③头发细节增强;

发色增强与修正模块

为什么要对头发的颜色进行增强与修正? 先看下面一组图,我们直接使用HSV颜色空间对纯黑色的头发进行染色,目标色是紫色,结果如下:

image

大家可以看到,针对上面这张原图,头发比较黑,在HSV颜色空间进行头发换色之后,效果图中很不明显,只有轻微的颜色变化。

为什么会出现这种情况?原因如下: 我们以RGB和HSV颜色空间为例,首先来看下HSV和RGB之间的转换公式:

设 (r, g, b)分别是一个颜色的红、绿和蓝坐标,它们的值是在0到1之间的实数。设max等价于r, g和b中的最大者。设min等于这些值中的最小者。要找到在HSL空间中的 (h, s, l)值,这里的h ∈ [0, 360)度是角度的色相角,而s, l ∈ [0,1]是饱和度和亮度,计算为:


image

我们假设头发为纯黑色,R=G=B=0,那么按照HSV计算公式可以得到H = S = V = 0;

假设我们要把头发颜色替换为红色(r=255,g=0,b=0);

那么,我们先将红色转换为对应的hsv,然后保留原始黑色头发的V,红色头发的hs,重新组合新的hsV,在转换为RGB颜色空间,即为头发换色之后的效果(hs是颜色属性,v是明度属性,保留原始黑色头发的明度,替换颜色属性以达到换色目的);

HSV转换为RGB的公式如下:

image

对于黑色,我们计算的结果是H=S=V=0,由于V=0,因此,p=q=t=0,不管目标颜色的hs值是多少,rgb始终都是0,也就是黑色;

这样,虽然我们使用了红色,来替换黑色头发,但是,结果却依旧是黑色,结论也就是hsv/hsl颜色空间,无法对黑色换色。

下面,我们给出天天P图和美妆相机对应紫色的换发色效果:

image

与之前HSV颜色空间的结果对比,我们明显可以看到,天天P图和美妆相机的效果要更浓,更好看,而且对近乎黑色的头发进行了完美的换色;

由于上述原因,我们这里需要对图像中的头发区域进行一定的增强处理:提亮,轻微改变色调;

这一步通常可以在PS上进行提亮调色,然后使用LUT来处理;

经过提亮之后的上色效果如下图所示:


image

可以看到,基本与美妆相机和天天P图类似了。

HSV/HSL/YCbCr颜色空间换色

这一步比较简单,保留明度分量不变,将其他颜色、色调分量替换为目标发色就可以了。

这里以HSV颜色空间为例:

假如我们要将头发染发为一半青色,一般粉红色,那么我们构建如下图所示的颜色MAP:

image

对于头发区域的每一个像素点P,我们将P的RGB转换为HSV颜色空间,得到H/S/V;

根据P在原图头发区域的位置比例关系,我们在颜色MAP中找到对应位置的像素点D,将D的RGB转换为HSV颜色空间,得到目标颜色的h/s/v;

根据目标颜色重组hsV,然后转为RGB即可;

这一模块代码如下:

#h=[0,360],s=[0,1],v=[0,1]
void RGBToHSV(int R, int G, int B, float* h, float* s,float* v)
{
    float min,max;
    float r = R/255.0f;
    float g = G/255.0f;
    float b = B/255.0f;
    min = MIN2(r,MIN2(g,b));
    max = MAX2(r,MAX2(g,b));
    if(max == min)
        *h=0;
    if(max == r && g >= b)
        *h = 60.0f * (g-b) / (max-min);
    if(max == r && g < b)
        *h = 60.0f * (g-b) / (max-min) + 360.0f;
    if(max == g)
        *h = 60.0f * (b-r) / (max-min) + 120.0f;
    if(max == b)
        *h = 60.0f * (r-g) / (max-min) + 240.0f;
    if(max == 0)
        *s = (max-min) / max;
    *v = max;    
};

void HSVToRGB(float h, float s,float v, int* R,int *G,int *B)
{
    float q=0,p=0,t=0,r=0,g=0,b=0;
    int hN=0;
    if(h<0)
        h=260+h;
    hN=(int)(h/60);
    p=v*(1.0f-s);
    q=v*(1.0f-(h/60.0f-hN)*s);
    t=v*(1.0f-(1.0f-(h/60.0f-hN))*s);
    switch(hN)
    {
    case 0:
        r=v;
        q=t;
        b=p;
        break;
    case 1:
        r=q;
        q=v;
        b=p;
        break;
    case 2:
        r=p;
        g=v;
        b=t;
        break;
    case 3:
        r=p;
        g=q;
        b=v;
        break;
    case 4:
        r=t;
        g=p;
        b=v;
        break;
    case 5:
        r=v;
        g=p;
        b=q;
        break;
    default:
        break;
    }
    *R=(int)CLIP3((r*255.0f),0,255);
    *G=(int)CLIP3((g*255.0f),0,255);
    *B=(int)CLIP3((b*255.0f),0,255);
};

效果图如下:

image

本文算法对比美妆相机效果如下:


image

头发区域增强

这一步主要是为了突出头发丝的细节,可以使用锐化算法,如Laplace锐化,USM锐化等等。上述过程基本是模拟美妆相机染发算法的过程,给大家参考一下,最后给出本文算法的一些效果举例:


image

本文效果除了实现正常的单色染发,混合色染发之外,还实现了挑染,如最下方一组效果图所示。

对于挑染的算法原理:

计算头发纹理,根据头发纹理选取需要挑染的头发束,然后对这些头发束与其他头发分开染色即可,具体逻辑这里不再累赘,大家自行研究,这里给出解决思路供大家参考。

最后,本文算法理论上实时处理是没有问题的,头发分割已经可以实时处理,所以后面基本没有什么耗时操作,使用opengl实现实时染发是没有问题的。

原文发布时间为:2018-08-02
本文来自云栖社区合作伙伴新智元,了解相关信息可以关注“AI_era”。
原文链接:【AI超级美发师】深度学习算法打造染发特效(附代码)

相关文章
|
25天前
|
机器学习/深度学习 人工智能 安全
探索AI的未来:从机器学习到深度学习
【10月更文挑战第28天】本文将带你走进AI的世界,从机器学习的基本概念到深度学习的复杂应用,我们将一起探索AI的未来。你将了解到AI如何改变我们的生活,以及它在未来可能带来的影响。无论你是AI专家还是初学者,这篇文章都将为你提供新的视角和思考。让我们一起探索AI的奥秘,看看它将如何塑造我们的未来。
64 3
|
14天前
|
传感器 人工智能 监控
智慧电厂AI算法方案
智慧电厂AI算法方案通过深度学习和机器学习技术,实现设备故障预测、发电运行优化、安全监控和环保管理。方案涵盖平台层、展现层、应用层和基础层,具备精准诊断、智能优化、全方位监控等优势,助力电厂提升效率、降低成本、保障安全和环保合规。
智慧电厂AI算法方案
|
10天前
|
机器学习/深度学习 传感器 人工智能
智慧无人机AI算法方案
智慧无人机AI算法方案通过集成先进的AI技术和多传感器融合,实现了无人机的自主飞行、智能避障、高效数据处理及多机协同作业,显著提升了无人机在复杂环境下的作业能力和安全性。该方案广泛应用于航拍测绘、巡检监测、应急救援和物流配送等领域,能够有效降低人工成本,提高任务执行效率和数据处理速度。
智慧无人机AI算法方案
|
14天前
|
机器学习/深度学习 人工智能 监控
智慧交通AI算法解决方案
智慧交通AI算法方案针对交通拥堵、违法取证难等问题,通过AI技术实现交通管理的智能化。平台层整合多种AI能力,提供实时监控、违法识别等功能;展现层与应用层则通过一张图、路口态势研判等工具,提升交通管理效率。方案优势包括先进的算法、系统集成性和数据融合性,应用场景涵盖车辆检测、道路环境检测和道路行人检测等。
|
14天前
|
传感器 人工智能 监控
智慧化工厂AI算法方案
智慧化工厂AI算法方案针对化工行业生产过程中的安全风险、效率瓶颈、环保压力和数据管理不足等问题,通过深度学习、大数据分析等技术,实现生产过程的实时监控与优化、设备故障预测与维护、安全预警与应急响应、环保监测与治理优化,全面提升工厂的智能化水平和管理效能。
智慧化工厂AI算法方案
|
15天前
|
机器学习/深度学习 人工智能 算法
基于Python深度学习的【垃圾识别系统】实现~TensorFlow+人工智能+算法网络
垃圾识别分类系统。本系统采用Python作为主要编程语言,通过收集了5种常见的垃圾数据集('塑料', '玻璃', '纸张', '纸板', '金属'),然后基于TensorFlow搭建卷积神经网络算法模型,通过对图像数据集进行多轮迭代训练,最后得到一个识别精度较高的模型文件。然后使用Django搭建Web网页端可视化操作界面,实现用户在网页端上传一张垃圾图片识别其名称。
57 0
基于Python深度学习的【垃圾识别系统】实现~TensorFlow+人工智能+算法网络
|
15天前
|
机器学习/深度学习 人工智能 算法
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
手写数字识别系统,使用Python作为主要开发语言,基于深度学习TensorFlow框架,搭建卷积神经网络算法。并通过对数据集进行训练,最后得到一个识别精度较高的模型。并基于Flask框架,开发网页端操作平台,实现用户上传一张图片识别其名称。
50 0
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
|
15天前
|
机器学习/深度学习 人工智能 算法
基于深度学习的【蔬菜识别】系统实现~Python+人工智能+TensorFlow+算法模型
蔬菜识别系统,本系统使用Python作为主要编程语言,通过收集了8种常见的蔬菜图像数据集('土豆', '大白菜', '大葱', '莲藕', '菠菜', '西红柿', '韭菜', '黄瓜'),然后基于TensorFlow搭建卷积神经网络算法模型,通过多轮迭代训练最后得到一个识别精度较高的模型文件。在使用Django开发web网页端操作界面,实现用户上传一张蔬菜图片识别其名称。
58 0
基于深度学习的【蔬菜识别】系统实现~Python+人工智能+TensorFlow+算法模型
|
26天前
|
机器学习/深度学习 人工智能 算法
AI在医疗:深度学习在医学影像诊断中的最新进展
【10月更文挑战第27天】本文探讨了深度学习技术在医学影像诊断中的最新进展,特别是在卷积神经网络(CNN)的应用。文章介绍了深度学习在识别肿瘤、病变等方面的优势,并提供了一个简单的Python代码示例,展示如何准备医学影像数据集。同时强调了数据隐私和伦理的重要性,展望了AI在医疗领域的未来前景。
57 2
|
27天前
|
安全 搜索推荐 机器学习/深度学习
AI赋能教育:深度学习在个性化学习系统中的应用
【10月更文挑战第26天】在人工智能的推动下,个性化学习系统逐渐成为教育领域的重要趋势。深度学习作为AI的核心技术,在构建个性化学习系统中发挥关键作用。本文探讨了深度学习在个性化推荐系统、智能辅导系统和学习行为分析中的应用,并提供了代码示例,展示了如何使用Keras构建模型预测学生对课程的兴趣。尽管面临数据隐私和模型可解释性等挑战,深度学习仍有望为教育带来更个性化和高效的学习体验。
71 0