【TensorFlow重大升级】自动将Python代码转为TF Graph,大幅简化动态图处理!

简介: TensorFlow发布重大功能改进AutoGraph,能自动将Python代码转换为TensorFlow Graph,TF动态图处理速度大幅提升!

【新智元导读】TensorFlow发布重大功能改进AutoGraph,能自动将Python代码转换为TensorFlow Graph,TF动态图处理速度大幅提升!

今天,TensorFlow团队发布新功能“AutoGraph”,能自动将Python代码(包括控制流,print () 和其他Python原生特征)转换为纯TensorFlow图代码(pure TensorFlow graph code)。

不使用 Eager Execution编写TensorFlow代码需要进行一些元编程(metaprogramming) ——先编写一个创建图(Graph)的程序,稍后再执行这个Graph。这可能令人困惑,尤其是对开发者新手来说。一些特别棘手的情况涉及更复杂的模型,比如要使用 if 和 while 的模型,或者有 print () 等副作用或接受结构化输入的模型。

为什么我们需要Graph呢?Graph允许各种优化,例如删除常见的子表达式和融合内核(fusing kernel)。再者,Graph简化了分布式训练和部署到各种环境的过程,因为它们形成了独立于平台的模型计算过程。这对于模型在多个GPU或TPU上的分布式训练尤为重要,如果你通过TensorFlow Lite、移动端、物联网等其他平台分发模型,Graph也很重要。

下面是一个很简单的、你可能希望添加到Graph里的操作:

def huber_loss(a):
  if tf.abs(a) <= delta:
    loss = a * a / 2
  else:
    loss = delta * (tf.abs(a) - delta / 2)
  return loss

通过Eager Execution,只是能做到这一点,但是由于Python解释器开销(interpreter overheads)或错过的程序优化机会,此类操作可能会很慢。

为了准备执行Graph,你需要重写这个以使用像 tf.cond () 这样的结构,但那样实现起来可能会耗时耗力而且很困难。AutoGraph可以为自动执行此类转换,将动态图编程的简易性保持很低的同时,获得基于Graph执行的性能优势。

在示例中,我们可以使用 autograph.convert () 来修饰函数,AutoGraph将自动生成 graph-ready 的代码。

使用AutoGraph,这段代码:

@autograph.convert()
def huber_loss(a):
  if tf.abs(a) <= delta:
    loss = a * a / 2
  else:
    loss = delta * (tf.abs(a) - delta / 2)
  return loss

在执行时将变成这种样子:

def tf__huber_loss(a):
  with tf.name_scope('huber_loss'):

    def if_true():
      with tf.name_scope('if_true'):
        loss = a * a / 2
        return loss,

    def if_false():
      with tf.name_scope('if_false'):
        loss = delta * (tf.abs(a) - delta / 2)
        return loss,
    loss = ag__.utils.run_cond(tf.less_equal(tf.abs(a), delta), if_true,
        if_false)
    return loss

你可以直接调用代码,就像TensorFlow op一样:

with tf.Graph().as_default():  
  x_tensor = tf.constant(9.0)

  # The converted function works like a regular op: tensors in, tensors out.
  huber_loss_tensor = huber_loss(x_tensor)

  with tf.Session() as sess:
    print('TensorFlow result: %2.2f\n' % sess.run(huber_loss_tensor))

综上,AutoGraph填补了Eager Execution和Graph之间的空白。AutoGraph 将你的 eager-style Python 代码自动转换为动态图生成(graph-generating)代码。

AutoGraph不仅仅是一组有用的宏指令(macro); 它涵盖Python语言的任何部分(利用源代码转换),包括控制流、函数应用程序和赋值、生成模板代码以及重构常用的Python让它易于转换为图形。

对于任何编译器,都会担心报错信息的可读性; 为此,AutoGraph创建了报错消息和堆栈跟踪,用来显示原始源代码中的错误源,而不仅仅是显示对生成的代码的参考。

可运行的例子

那么,AutoGraph可以为你做什么呢? 以下是一些代码示例,它可以直接转换为图形代码而无需任何更改。 如果你想查看完整的代码,我们有一个notebook,你可以在Colab或GitHub上查看。

在这里,我们使用循环和分支检测Collatz猜想。 注意,我们使用AutoGraph的.to_graph()函数将其转换为图形的原因,是为了多样性而不是为了装饰。

def collatz(a):
    counter = 0
    while a != 1:
        if a % 2 == 0:
            a = a // 2
        else:
            a = 3 * a + 1
        counter = counter + 1
    return counter

graph_mode_collatz = autograph.to_graph(collatz)
# The code is human-readable, too
print(autograph.to_code(collatz))

collatz_tensor = graph_mode_collatz(tf.constant(n))

AutoGraph可以支持任意嵌套控制流,例如:

def f(n):
  if n >= 0:
    while n < 5:
      n += 1
      print(n)
  return n

AutoGraph允许你将元素追加到循环内的数组中。 为了达到这个要求,我们使用一些AutoGraph助手,例如set_element_type 和 stack。

def f(n):
  z = []
  # We ask you to tell us the element dtype of the list
  autograph.set_element_type(z, tf.int32)
  for i in range(n):
    z.append(i)
  # when you're done with the list, stack it
  # (this is just like np.stack)
  return autograph.stack(z)

我们还支持像break,continue,甚至print和assert这样的结构。 转换后,该片段的Python将转换为图形(使用恰当的tf.Assert)。

def f(x):
  assert x != 0, 'Do not pass zero!'
  return x * x

能够轻松地添加循环,控制流程以及更多图表意味着可以轻松地将训练循环移动到图形中。 这个例子可以在这个notebook中找到,我们采用RNN训练循环并用一个sess.run()调用执行它。 在需要将整个训练循环传递给加速器而不是通过CPU控制器管理训练的情况下,这可能是很有用的。

AutoGraph开辟了构建和训练模型的新思路。我们期待根据开发者社区的建议为AutoGraph添加更多功能,所以请提出你的建议和问题吧!

AutoGraph和Eager Execution

在使用eager execution时,你仍然可以通过tf.contrib.eager.defun对代码的某些部分使用图执行。这要求你使用TensorFlow图形操作,如tf.cond()。 将来,AutoGraph将与defun无缝集成,以允许在简单的eager 风格的Python中创作图形代码。 当该实现可用时,你可以通过选择性地将eager代码转换为graph fragments来使用AutoGraph加速热点。

结论

AutoGraph是一款工具,可让你轻松构建直观,复杂的模型,在TensorFlow图中轻松运行。 这是一个现在在contrib中的实验工具,但我们希望尽快将其转移到核心TensorFlow中。

告诉我们您使用AutoGraph的经历! 如果你有反馈,建议或想法,请提交问题并向TensorFlow开发人员小组发送消息。

原文链接:https://medium.com/tensorflow/autograph-converts-python-into-tensorflow-graphs-b2a871f87ec7

原文发布时间为:2018-07-19
本文来自云栖社区合作伙伴新智元,了解相关信息可以关注“AI_era”。
原文链接:【TensorFlow重大升级】自动将Python代码转为TF Graph,大幅简化动态图处理!

相关文章
|
21天前
|
存储 缓存 Java
Python高性能编程:五种核心优化技术的原理与Python代码
Python在高性能应用场景中常因执行速度不及C、C++等编译型语言而受质疑,但通过合理利用标准库的优化特性,如`__slots__`机制、列表推导式、`@lru_cache`装饰器和生成器等,可以显著提升代码效率。本文详细介绍了这些实用的性能优化技术,帮助开发者在不牺牲代码质量的前提下提高程序性能。实验数据表明,这些优化方法能在内存使用和计算效率方面带来显著改进,适用于大规模数据处理、递归计算等场景。
58 5
Python高性能编程:五种核心优化技术的原理与Python代码
|
2月前
|
Python
课程设计项目之基于Python实现围棋游戏代码
游戏进去默认为九路玩法,当然也可以选择十三路或是十九路玩法 使用pycharam打开项目,pip安装模块并引用,然后运行即可, 代码每行都有详细的注释,可以做课程设计或者毕业设计项目参考
78 33
|
2月前
|
JavaScript API C#
【Azure Developer】Python代码调用Graph API将外部用户添加到组,结果无效,也无错误信息
根据Graph API文档,在单个请求中将多个成员添加到组时,Python代码示例中的`members@odata.bind`被错误写为`members@odata_bind`,导致用户未成功添加。
50 10
|
2月前
|
数据可视化 Python
以下是一些常用的图表类型及其Python代码示例,使用Matplotlib和Seaborn库。
通过这些思维导图和分析说明表,您可以更直观地理解和选择适合的数据可视化图表类型,帮助更有效地展示和分析数据。
103 8
|
2月前
|
Python
探索Python中的装饰器:简化代码,增强功能
在Python的世界里,装饰器就像是给函数穿上了一件神奇的外套,让它们拥有了超能力。本文将通过浅显易懂的语言和生动的比喻,带你了解装饰器的基本概念、使用方法以及它们如何让你的代码变得更加简洁高效。让我们一起揭开装饰器的神秘面纱,看看它是如何在不改变函数核心逻辑的情况下,为函数增添新功能的吧!
|
2月前
|
机器学习/深度学习 人工智能 算法
猫狗宠物识别系统Python+TensorFlow+人工智能+深度学习+卷积网络算法
宠物识别系统使用Python和TensorFlow搭建卷积神经网络,基于37种常见猫狗数据集训练高精度模型,并保存为h5格式。通过Django框架搭建Web平台,用户上传宠物图片即可识别其名称,提供便捷的宠物识别服务。
349 55
|
3月前
|
机器学习/深度学习 数据采集 数据可视化
TensorFlow,一款由谷歌开发的开源深度学习框架,详细讲解了使用 TensorFlow 构建深度学习模型的步骤
本文介绍了 TensorFlow,一款由谷歌开发的开源深度学习框架,详细讲解了使用 TensorFlow 构建深度学习模型的步骤,包括数据准备、模型定义、损失函数与优化器选择、模型训练与评估、模型保存与部署,并展示了构建全连接神经网络的具体示例。此外,还探讨了 TensorFlow 的高级特性,如自动微分、模型可视化和分布式训练,以及其在未来的发展前景。
337 5
|
3月前
|
机器学习/深度学习 人工智能 算法
基于Python深度学习的【垃圾识别系统】实现~TensorFlow+人工智能+算法网络
垃圾识别分类系统。本系统采用Python作为主要编程语言,通过收集了5种常见的垃圾数据集('塑料', '玻璃', '纸张', '纸板', '金属'),然后基于TensorFlow搭建卷积神经网络算法模型,通过对图像数据集进行多轮迭代训练,最后得到一个识别精度较高的模型文件。然后使用Django搭建Web网页端可视化操作界面,实现用户在网页端上传一张垃圾图片识别其名称。
137 0
基于Python深度学习的【垃圾识别系统】实现~TensorFlow+人工智能+算法网络
|
3月前
|
机器学习/深度学习 人工智能 算法
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
手写数字识别系统,使用Python作为主要开发语言,基于深度学习TensorFlow框架,搭建卷积神经网络算法。并通过对数据集进行训练,最后得到一个识别精度较高的模型。并基于Flask框架,开发网页端操作平台,实现用户上传一张图片识别其名称。
179 0
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
|
3月前
|
机器学习/深度学习 人工智能 算法
基于深度学习的【蔬菜识别】系统实现~Python+人工智能+TensorFlow+算法模型
蔬菜识别系统,本系统使用Python作为主要编程语言,通过收集了8种常见的蔬菜图像数据集('土豆', '大白菜', '大葱', '莲藕', '菠菜', '西红柿', '韭菜', '黄瓜'),然后基于TensorFlow搭建卷积神经网络算法模型,通过多轮迭代训练最后得到一个识别精度较高的模型文件。在使用Django开发web网页端操作界面,实现用户上传一张蔬菜图片识别其名称。
171 0
基于深度学习的【蔬菜识别】系统实现~Python+人工智能+TensorFlow+算法模型

热门文章

最新文章