开发者社区> sigai大讲堂> 正文

人脸检测算法之 S3FD

简介:
+关注继续查看

 

SIGAI 特邀作者:Baoming

原创声明:本文为 SIGAI 原创文章,仅供个人学习使用,未经允许,不得转载,不能用于商业目的。

 

导言

自从anchor-based method出现之后,物体检测基本上就离不开这个神奇的anchor了。只因有了它的协助,人类才在检测任务上第一次看到了real time的曙光。但是,夹杂在通用物体检测中,某些特定物体的检测任务由于应用量巨大,以及该物体的特殊性,需要单独拎出来考虑。其中最有代表性的就是人脸检测。

人脸相对于其他物体来说有一个普遍的特点,就是在图像中所占像素少。比如,coco数据集中,有一个分类是“人”,但是人脸在人体中只占很少一部分,在全图像上所占比例就更少了。本文所要介绍的S3FD[1](Single Shot Scale-invariant Face Detector)正是要解决这个问题。

 

 

人脸检测专用数据集—widerface

Widerface可以说是目前人脸检测数据集中最难的,放一张图大家感受一下(图片来自widerface数据集)

1c9c1d68487bf6345b1c95ed8a694f840c23bf39

图片像素1024*732,平均人脸像素10*13,难度可想而知。(一共标注了132个人脸,吃饱了撑的读者可以数数看)

当然了,这张照片只是展示了人脸的大小引发的问题,还有其他像遮挡,大角度,旋转等问题,由于不是本文的重点,不予过多讨论。

 

SSD简介

由于该算法是基于SSD来做的改进,首先简单介绍一下SSD[2]。

(图片来自[2])

db17b79ae1140fd530519f81c86f516e38169460

如图为SSD和YOLO的网络结构,他们也是最早的一批实现了one-stage检测的算法。可以看到,SSD为全卷积网络,并且通过不同位置的layer进行预测。换句话说,用低层网络检测小物体,高层网络检测大物体。

当然了,SSD也有一些明显的问题,比如对于小物体的recall很一般。部分原因是在利用低层网络做预测时,由于网络不够深,不能提取到有效的语义信息。

总之,SSD检测速度可以和YOLO媲美的同时,精度又可以和Faster RCNN媲美,而且很适合作为基础框架进行进一步的改进。

 

传统anchor机制在小人脸中遇到的问题

(以下图片均来自[1])

d2aecbce246664aea5b562f22147456f2e97e63b

本文作者提出了四个问题:

1.     人脸区域本身就小,经过几个stride之后,特征图上就不剩什么了

2.     相比于感受野和anchor的尺寸来说,人脸的尺寸小的可怜

3.     对于现有的anchor匹配策略,我们可以看到,人脸像素小于10*10的tiny face基本上一个anchor都匹配不到。而outer face这个问题其实是anchor-based方法的通病,每级anchor间大小差距越大,中间尺寸的mismatch现象就越严重。

4.     图中每一个网格可以看成是某个特定尺寸的anchor。可以看到对于左边的小人脸,正负比例严重失衡,这在训练时,尤其是first layer,需要特别考虑。

本文算法就是为了解决这几个问题。

 


网络结构

fcef6d2883827b96634e015e4c47595f3fa6dda7

1.     输入大小640*640,从feature map大小为160*160开始,一直到最后5*5,共有6级预测网络,anchor scale从16*16到最后512*512,依次指数加一(看了网络结构强迫症表示很舒服)。

2.     每一个预测层,每个位置anchor只有一个(一个scale,ratio为1:1),因为在不扭曲图片的场景下,人脸的比例大概就是1:1(可能有少部分大长脸比例达到了1:2,但是太少了忽略不计)。因此,预测conv输出的特征维度是2+4=6

3.     在作为预测的最低层的layer(即feature map大小为160*160)下面可以看到预测出来的特征维度为Ns+4,不是2+4,然后跟了一个叫Max-out Background label的东西,这个后面会讲到。

4.     中间的conv_fc6,conv_fc7是从VGG的fc层提取出来然后reshape,作为初始权重。

5.     Normalization layers就是SSD_caffe中的Normalize。感兴趣的可以去Github看weiliu89的SSD版本的Caffe代码[2]。

 

  

如何解决问题:

1.     Anchor与anchor之间重叠区域多。比如第一级,stride是4,但是anchor scale是16,所以相邻两个anchor之间有很大一块重叠区域,一定程度上解决了前文提到的outer face的问题。

2.     改进了anchor匹配策略。

如果按照SSD中的匹配策略,jaccard overlap高于阈值(一般取0.5),平均每个人脸只能匹配到3个anchor,而且tiny face和outer face能匹配的anchor数量大部分为0.

作者设计了新的匹配策略:

第一步,将阈值从0.5降到0.35

第二步,对于那些仍然匹配不到anchor的人脸,直接将阈值降到0.1,然后将匹配到的anchor按照jaccard overlap排序,选取top-N个。这个N作者设计为第一步中匹配到anchor的平均值。

再来直观的对比一下新老匹配策略:

d2a5060bc2fbada15860ef4fd10b06582740e884

可以看到,average line和局部都有所提升。

3.     前面提到,小人脸导致正负样本比例严重失衡。尤其对于最浅层的预测层,一方面anchor本来就多(像本文中的结构,第一级中anchor就占了总数的75%),另一方面由于大部分anchor是背景,导致false positive显著增高。所以为了减少这里的false positive,作者采用了max-out background。

前面我们看到第一级预测出来的特征维度是Ns+4,这里NS=Nm+1。对于不采用max-out策略的网络层,Nm可以看成是1,即只预测一个该anchor为背景的分数。但是这里取3,可以理解为重复三次预测该anchor为背景的分数,然后取这三个分数中最高的那一个。最直接的结果就是提高了该anchor被预测为背景的概率,因此能够减小false positive。

 

最后在widerface medium和hard等级上看看本文的成果(测试代码可以在作者提供的github代码中查看[3])

1e64496dda8abc687c2fcec61b2d19105aa9bbf4

可以看到尤其是hard等级上,本文算法有巨大的提升。

 

参考文献

[1] Zhang, S., Zhu, X., Lei, Z., Shi, H., Wang, X., & Li, S. Z. (2017, October). S^ 3FD: Single Shot Scale-Invariant Face Detector. In Computer Vision (ICCV), 2017 IEEE International Conference on (pp. 192-201). IEEE.

[2] Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu, C. Y., & Berg, A. C. (2016, October). Ssd: Single shot multibox detector. In European conference on computer vision (pp. 21-37). Springer, Cham.

[3] https://github.com/weiliu89/caffe

[4] https://github.com/sfzhang15/SFD

 

 

 

推荐阅读

[1] 机器学习-波澜壮阔40 SIGAI 2018.4.13.

[2] 学好机器学习需要哪些数学知识?SIGAI 2018.4.17.

[3] 人脸识别算法演化史 SIGAI 2018.4.20.

[4] 基于深度学习的目标检测算法综述 SIGAI 2018.4.24.

[5] 卷积神经网络为什么能够称霸计算机视觉领域?  SIGAI 2018.4.26.

[6] 用一张图理解SVM的脉络  SIGAI 2018.4.28.

[7] 人脸检测算法综述  SIGAI 2018.5.3.

[8] 理解神经网络的激活函数 SIGAI 2018.5.5.

[9] 深度卷积神经网络演化历史及结构改进脉络-40页长文全面解读 SIGAI 2018.5.8.

[10] 理解梯度下降法 SIGAI 2018.5.11.

[11] 循环神经网络综述语音识别与自然语言处理的利器 SIGAI 2018.5.15

[12] 理解凸优化  SIGAI 2018.5.18

[13] 【实验】理解SVM的核函数和参数 SIGAI 2018.5.22

[14] SIGAI综述】行人检测算法 SIGAI 2018.5.25

[15] 机器学习在自动驾驶中的应用以百度阿波罗平台为例() SIGAI 2018.5.29

[16] 理解牛顿法 SIGAI 2018.5.31

[17] 【群话题精华】5月集锦机器学习和深度学习中一些值得思考的问题 SIGAI 2018.6.1

[18] 大话Adaboost算法 SIGAI 2018.6.2

[19] FlowNetFlowNet2.0:基于卷积神经网络的光流预测算法 SIGAI 2018.6.4

[20] 理解主成分分析(PCA) SIGAI 2018.6.6

[21] 人体骨骼关键点检测综述  SIGAI 2018.6.8

[22] 理解决策树 SIGAI 2018.6.11

[23] 用一句话总结常用的机器学习算法 SIGAI 2018.6.13

[24] 目标检测算法之YOLO SIGAI 2018.6.15

[25] 理解过拟合 SIGAI 2018.6.18

[26] 理解计算:从√2AlphaGo ——1 √2谈起 SIGAI 2018.6.20

[27] 场景文本检测——CTPN算法介绍  SIGAI 2018.6.22

[28] 卷积神经网络的压缩和加速 SIGAI 2018.6.25

[29] k近邻算法 SIGAI 2018.6.27

[30] 自然场景文本检测识别技术综述 SIGAI 2018.6.27

[31] 理解计算:从√2AlphaGo ——2 神经计算的历史背景 SIGAI 2018.7.4

[32] 机器学习算法地图 SIGAI2018.7.6

[33]  反向传播算法推导-全连接神经网络 SIGAI2018.7.9

[34]  生成式对抗网络模型综述 SIGAI0709.

[35]  怎样成为一名优秀的算法工程师SIGAI0711.

[36]. 理解计算:从根号2AlphaGo——第三季 神经网络的数学模型 SIGAI0716

 

原创声明:本文为 SIGAI 原创文章,仅供个人学习使用,未经允许,不得转载,不能用于商业目的。

 

 

 

版权声明:本文内容由阿里云实名注册用户自发贡献,版权归原作者所有,阿里云开发者社区不拥有其著作权,亦不承担相应法律责任。具体规则请查看《阿里云开发者社区用户服务协议》和《阿里云开发者社区知识产权保护指引》。如果您发现本社区中有涉嫌抄袭的内容,填写侵权投诉表单进行举报,一经查实,本社区将立刻删除涉嫌侵权内容。

相关文章
基于肤色模型和形态学处理的人脸检测算法matlab仿真
基于肤色模型和形态学处理的人脸检测算法matlab仿真
76 0
Python人工智能实例 │ 使用Haar级联进行人脸检测、使用CAMShift算法、光流法进行人脸追踪
Python人工智能实例 │ 使用Haar级联进行人脸检测、使用CAMShift算法、光流法进行人脸追踪
87 0
基于Adaboost的人脸检测算法
基于Adaboost的人脸检测算法
76 0
5月9日云栖精选夜读丨阿里量子实验室研制出全球最强量子电路模拟器“太章”;超强干货一文综述人脸检测算法
5月8日,阿里巴巴量子实验室施尧耘团队宣布于近日成功研制当前世界最强的量子电路模拟器,名为“太章”。同日,巴基斯坦电商公司Daraz宣布被阿里巴巴集团全资收购。超强干货一文综述人脸检测算法......更多详情尽在今日云栖夜读!
3923 0
将数组a中数据元素实现就地逆置的算法
给出将整型数组a中数据元素实现就地逆置的算法。所谓就地逆置,就是利用数组a原有空间来存放数组a中逆序排放后的各个数据元素。
139 0
【前端算法】JS实现数字千分位格式化
JS实现数字千分位格式化的几种思路,以及它们之间的性能比较
62 0
【前端算法】用JS实现快速排序
理解数组方法里面运用到的算法,splice 和 slice的区别
26 0
+关注
sigai大讲堂
文章
问答
视频
文章排行榜
最热
最新
相关电子书
更多
网易云音乐音视频算法处理的 Serverless 探索之路
立即下载
阿里技术参考图册-算法篇
立即下载
阿里千亿特征深度学习算法XNN实践
立即下载