数理逻辑之 数学归纳法

简介: 说道数学归纳法,大家并不陌生。 这一节先来回顾一下我们似曾相识的归纳法,然后用它解决一个问题。   先来回忆一个小故事:高斯8岁的时候快速计算连续自然数的和。 咦!你感觉无聊了没:竟然有是这个故事,小时候都不知道听多少遍了。

说道数学归纳法,大家并不陌生。

这一节先来回顾一下我们似曾相识的归纳法,然后用它解决一个问题。

 

先来回忆一个小故事:高斯8岁的时候快速计算连续自然数的和。

咦!你感觉无聊了没:竟然有是这个故事,小时候都不知道听多少遍了。

其实过去这么久了,很多小时候我们耳熟能详的名字,现在对他们及他们的事迹印象没那么深了。

比如罗盛教、高士奇、齐白石、李星华等,多年不说,这样小学课本里的名字就很难想起来了。

闲言少叙,书归正传。看看我讲的高斯故事和你记得一不一样。

话说高斯八岁的时候已经上小学了。一天他的数学老师在家里让老婆打了(什么原因不知道,历史也没记载),所以他到学校就拿小孩子出气。这非常不好嘛,如果按照《乡村教师》里写的有记忆遗传就不需要教师了。他一冲进教室就往黑板上写了一道题目:1加到100是多少?

小孩子嘛,也不知道啥意思,没学过小数也没学过四元数,以为是1+2+3+...+100是多少。其实老师也是这吗想的。他估计小孩子们做完这么复杂的题目心里肯定很难受,和他让老婆打了一样难受。写完后他就坐在教室门口发呆,想着他老婆打他的招式,下一次该怎么躲才能让她老婆打他老婆自己。

这个问题都还没完整的想出来呢,高斯就不知好歹的跑过去大声说“老师我做完了!”老师大吃一惊:尼玛这是要逆天吗?结果拿过来一看:靠,结果真对了!!

(我觉得这个故事很扯淡,导致我认为高斯这个故事是假的)

高斯怎么做的,大家都知道我就不说了。

通过这个故事我们要说数学归纳法:请用归纳法证明对于任意的自然数n,都满足1+2+3+4+···+n=n·(n+1)/2

数学归纳法是一个只针对自然数的法则,和自然数没关系的绝对不能使用归纳法。所以我们不能说:根据归纳法,因为猴子有男女,所以猩猩有男女。

归纳法包含两个过程:

证明自然数1满足这个属性;
假设自然数n满足这个属性,根据n的这个属性证明n+1也有这个属性。

 这个有两点要注意:必须先证明1满足这个属性,而不能直接证明任意一个其他确定的自然数有这属性(虽然看起来是一样的,但是逻辑不严密);要证明n+1有这属性必须是在n的基础上,不能用其他方法证明,否则就不是归纳法了。

我们把假设n有这个属性称为“归纳假设”。

证明

当n=1时,满足1 = 1· (1 + 1)/2;
假设n=k(k>1)时有1+2+...+k=k·(k+1)/2,我们证明n=k+1时有1+2+3+...+k+(k+1)=(k+1)·(k+1+1)/2。
1+2+3+...+k+(k+1)
=k·(k+1)/2 + (k+1)
=k·(k+1)/2 +2·(k+1)/2
=(k+1)·(k+1+1)/2。
得证。

 

前面我们学写过合式公式语法树的高度,我们证明一个和他相关的定理:每个命题逻辑合式公式都含有相同个数的左括号和右括号。

 这是命题逻辑中一个重要的定理。

证明

我们通过合式公式语法树的高度使用数学归纳法。

我们用M(n)表示“每个高度为n的合式公式都有相同的左括号和右括号”。我们需要假设对于任意的k,k<n,都有M (k)成立。以此来证明M(n)成立。不妨设公式Θ的高度为n。

当n=1时,合式公式是一个原子命题,它的左右括号都是0,成立!

当n>1时,合式公式语法树的根节点有四种可能:¬、→、∨、∧,假设根节点是→,其余三种情况同理可证。则公式Θ的形式是(Θ1→Θ2),Θ1,Θ2是另外两个合式公式。可以肯定的是Θ1和Θ2的语法树高度一定比n小。根据归纳假设,我们已经知道Θ1和Θ2都有相同的左括号和右括号。当把它们组成公式Θ时是(Θ1→Θ2),又分别增加了一个左括号和右括号。所以Θ依然有相同的左括号和右括号。

得证。

 

这里的证明需要注意的是,不能和上一题证明一样直接某一个高度的结果。因为合式公式的语法子树高度一般不相等。

目录
打赏
0
0
0
0
1094
分享
相关文章
|
10月前
大学物理(上)-期末知识点结合习题复习(4)——质点运动学-动能定理 力做功 保守力与非保守力 势能 机械能守恒定律 完全弹性碰撞
大学物理(上)-期末知识点结合习题复习(4)——质点运动学-动能定理 力做功 保守力与非保守力 势能 机械能守恒定律 完全弹性碰撞
257 0
|
11月前
【编程题-错题集】非对称之美(找规律 / 贪心)
【编程题-错题集】非对称之美(找规律 / 贪心)
算法提高:组合数学| 卡特兰数的实现
卡特兰数列是组合数学中在各种计数问题中常出现的数列,其前几项为1,1,2,5,14,42,132,429,1430,4862,16796,58786,208012…… 卡特兰数首先是由欧拉在计算对凸n边形的不同的对角三角形剖分的个数问题时得到的,即在一个凸n边形中,通过不相交于n边形内部的对角线,把n边形拆分成若干三角形,不同的拆分数用Hn表示,Hn即卡特兰数。
180 0
算法提高:组合数学| 卡特兰数的实现
把所有的谎言献给你β(找规律数学题)
梓川咲太的面前坐着野兔先辈,作为约定,只好乖乖的打开笔记本开始学习了。 “加法符号写歪了,变成了乘法符号,在算式的第三行那个地方。”樱岛麻衣突然开口。
196 0
把所有的谎言献给你β(找规律数学题)
动态规划法
动态规划是在20世纪50年代由美国数学家贝尔曼为研究最优控制问题而提出的,当该方法在应用数学中的价值被大家认同以后,在计算机学界,动态规划法成为一种通用的算法设计技术用来求解多阶段决策最优化问题。
数学知识:高斯消元(二)
AcWing 884. 高斯消元解异或线性方程组
132 0
数学知识:高斯消元(二)
数学知识:高斯消元(一)
复习acwing算法基础课的内容,本篇为讲解数学知识:高斯消元,关于时间复杂度:目前博主不太会计算,先鸽了,日后一定补上。
199 0
数学知识:高斯消元(一)
【数理逻辑】命题逻辑 ( 命题与联结词回顾 | 命题公式 | 联结词优先级 | 真值表 可满足式 矛盾式 重言式 )
【数理逻辑】命题逻辑 ( 命题与联结词回顾 | 命题公式 | 联结词优先级 | 真值表 可满足式 矛盾式 重言式 )
506 0
下一篇
oss创建bucket
AI助理

你好,我是AI助理

可以解答问题、推荐解决方案等