以LLaMa 65B模型训练实例来计算AI/HPC算力光模块数量

简介: 本文介绍了如何根据LLaMa 65B模型训练需求计算所需的AI/HPC光模块数量。在案例中,使用2048个A100 GPU,单GPU算力为156 TFLOPS。模型算力需求为546*10^21 FLOPS,预计训练时间为20天。采用两层Fat-Tree网络架构,需1024个400G网卡,48台交换机,若全用400G光模块则需4096个,交换机间2048个,网卡间1024个。大成鹏通信提供200G至800G的解决方案,并提供咨询与支持服务。

网络上的文章基本上是根据设备商规划好的网络架构来计算AI/HPC算力光模块(以下简称光模块)的数量。今天,大成鹏通信就以LLaMa 65B模型训练实例来阐释AI训练模型需要的网络架构对应的光模块数量如何计算。本案例的训练模型为LLaMa 65B,使用的GPU为A100,数量2048个。

算力计算:
①单个GPU的算力供给计算公式:
单GPU算力供给(A) =GPU核数 单核主频 单周期浮点计算能力。(该参数一般由GPU厂商直接给出)
②单个模型的算力需求计算公式为:
单模型算力需求(C)=6 模型的参数量 训练数据的 token 数。
③估算训练时间:
T=C/(X*A),X为GPU数量,单位为秒。
image.png

图1 A100 GPU算力


结合我们的案例:
①单张GPU A100的算力供给:
BF16浮点数格式(训练精度)下,算力为312TFLOPS。也就是单GPU算力供给(A) =312 TFLOPS=312 10^12FLOPS。
**
实际应用中要考虑训练效率:A100的实际利用率50%左右,并以此为基础推算单个A100的算力A=312 10^12FLOPS 50%=156 10^12FLOPS。**
②LLaMa 65B模型算力需求:
C=6 65B1.4T=6 6510^9 1.410^12=546*10^21

image.png

图2 LLaMa 65B模型参数


③估算训练时间:
GPU数量为2048个,T=C/(2048A) =546 10^21/(2048156 10^12)=1708984.375秒≈20天。
(可以根据此公式,预设训练时间,反推出GPU数量)

网络架构选择:
IB组网通常采用无阻塞网络设计,其关键是采用 Fat-Tree(胖树)网络架构。交换机下联和上联带宽采用 1:1 无收敛设计,即如果下联有32个400Gbps 的端口,那么上联也有 32个 400Gbps 的端口。
两层胖树和三层胖树最重要的区别是可以容纳的 GPU 卡的规模不同。在下图中 N 代表 GPU 卡的规模,P 代表单台交换机的端口数量。比如对于端口数为 64 的交换机,两层胖树架构可容纳的 GPU 卡的数量是 2048卡,三层胖树架构可容纳的 GPU 卡的数量是 65,535卡。

image.png

图3 GPU和交换机端口计算公式


目前,结合我们第一部分算力的计算,使用LLaMa 65B模型,运用A100 GPU进行计算,训练时间20天,GPU数量为2048个,那么选用两层Fat-Tree(胖树)网络结构,即可满足需求。
image.png

图4 二层胖树结构


网卡、交换机、光模块数量计算:
①网卡数量计算
单个A100 GPU支持PCI Express 4.0,最大传输带宽32GB/s=256Gb/s。如果单个服务器有2张GPU ,所以可以选择1张400G IB网卡(CX-7)进行传输。
image.png

图5 A100 PCIE接口规格


image.png

图6 IB网卡规格


因此GPU卡数量:400G网卡数量=2:1。该案例中GPU数量2048个,那么网卡数量1024个。

②交换机数量计算
以网卡数量来计算交换机数量。使用NVDIA MQM9700系列交换机,每台交换机共计64个400G端口。网络收敛比1:1。
交换机数量:用1024÷32=32,计算出Leaf交换机数量;32÷2=16,计算出Spine交换机数量,总计48台。

image.png

图7 二层胖树结构网络互联


③光模块数量计算
如果全部使用400G光模块互联:48 64+1024=4096个。
如果交换机互联用的400G光模块:32x32+64
16=2048个;交换机和网卡互联使用400G AOC:1024条。

大成鹏通信目前正在研发适用于AI算力计算的800G产品,届时将形成200G~800G AI/HPC算力光模块解决方案,完美兼容Infiniband设备,替代原装光模块、AOC、DAC!
如果您有AI/HPC算力光模块配置、使用、维护等方面的问题,可以联系我们,网址:www.calightble.com,邮箱地址:tech@calightble.com,大成鹏通信将竭诚为您解答!

相关实践学习
部署Stable Diffusion玩转AI绘画(GPU云服务器)
本实验通过在ECS上从零开始部署Stable Diffusion来进行AI绘画创作,开启AIGC盲盒。
相关文章
|
20天前
|
机器学习/深度学习 人工智能 自然语言处理
Llama 3.3:Meta AI 开源新的纯文本语言模型,专注于多语言对话优化
Meta AI推出的Llama 3.3是一款70B参数的纯文本语言模型,支持多语言对话,具备高效、低成本的特点,适用于多种应用场景,如聊天机器人、客户服务自动化、语言翻译等。
73 13
Llama 3.3:Meta AI 开源新的纯文本语言模型,专注于多语言对话优化
|
17天前
|
人工智能 缓存 并行计算
转载:【AI系统】CPU 计算本质
本文深入探讨了CPU计算性能,分析了算力敏感度及技术趋势对CPU性能的影响。文章通过具体数据和实例,讲解了CPU算力的计算方法、算力与数据加载之间的平衡,以及如何通过算力敏感度分析优化计算系统性能。同时,文章还考察了服务器、GPU和超级计算机等平台的性能发展,揭示了这些变化如何塑造我们对CPU性能的理解和期待。
转载:【AI系统】CPU 计算本质
|
17天前
|
机器学习/深度学习 存储 人工智能
转载:【AI系统】计算之比特位宽
本文详细介绍了深度学习中模型量化操作及其重要性,重点探讨了比特位宽的概念,包括整数和浮点数的表示方法。文章还分析了不同数据类型(如FP32、FP16、BF16、FP8等)在AI模型中的应用,特别是FP8数据类型在提升计算性能和降低内存占用方面的优势。最后,文章讨论了降低比特位宽对AI芯片性能的影响,强调了在不同应用场景中选择合适数据类型的重要性。
转载:【AI系统】计算之比特位宽
|
21天前
|
机器学习/深度学习 人工智能 前端开发
【AI系统】计算图的控制流实现
计算图作为有向无环图(DAG),能够抽象神经网络模型,但在编程中遇到控制流语句(如if、else、while、for)时,如何表示成为难题。引入控制流后,开发者可构建更复杂的模型结构,但部署含控制流的模型至不支持Python的设备上较为困难。目前,PyTorch仅支持Python控制流,而TensorFlow通过引入控制流原语来解决此问题。计算图的动态与静态实现各有优劣,动态图易于调试,静态图利于优化。
43 5
【AI系统】计算图的控制流实现
|
21天前
|
机器学习/深度学习 人工智能 算法
【AI系统】计算图挑战与未来
当前主流AI框架采用计算图抽象神经网络计算,以张量和算子为核心元素,有效表达模型计算逻辑。计算图不仅简化数据流动,支持内存优化和算子调度,还促进了自动微分功能的实现,区分静态图和动态图两种形式。未来,计算图将在图神经网络、大数据融合、推理部署及科学计算等领域持续演进,适应更复杂的计算需求。
50 5
【AI系统】计算图挑战与未来
|
21天前
|
机器学习/深度学习 人工智能 PyTorch
【AI系统】计算图基本介绍
近年来,AI框架如TensorFlow和PyTorch通过计算图描述神经网络,推动了AI技术的发展。计算图不仅抽象了神经网络的计算表达,还支持了模型算子的高效执行、梯度计算及参数训练。随着模型复杂度增加,如MOE、GAN、Attention Transformer等,AI框架需具备快速分析模型结构的能力,以优化训练效率。计算图与自动微分紧密结合,实现了从前向计算到反向传播的全流程自动化。
40 4
【AI系统】计算图基本介绍
|
22天前
|
存储 机器学习/深度学习 人工智能
【AI系统】计算图优化架构
本文介绍了推理引擎转换中的图优化模块,涵盖算子融合、布局转换、算子替换及内存优化等技术,旨在提升模型推理效率。计算图优化技术通过减少计算冗余、提高计算效率和减少内存占用,显著改善模型在资源受限设备上的运行表现。文中详细探讨了离线优化模块面临的挑战及解决方案,包括结构冗余、精度冗余、算法冗余和读写冗余的处理方法。此外,文章还介绍了ONNX Runtime的图优化机制及其在实际应用中的实现,展示了如何通过图优化提高模型推理性能的具体示例。
52 4
【AI系统】计算图优化架构
|
22天前
|
机器学习/深度学习 存储 人工智能
【AI系统】自定义计算图 IR
本文介绍了模型转换的方法及流程,重点讲解了计算图的自定义方法和优化技术。通过IR(Intermediate Representation)将不同AI框架的模型转换为统一格式,实现跨平台高效部署。计算图由张量和算子构成,支持多种数据类型和内存排布格式,通过算子融合等优化技术提高模型性能。文章还详细说明了如何使用FlatBuffers定义计算图结构,包括张量、算子和网络模型的定义,为自定义神经网络提供了实践指南。
34 3
【AI系统】自定义计算图 IR
|
17天前
|
编解码 机器人 测试技术
技术实践 | 使用 PAI+LLaMA Factory 微调 Qwen2-VL 模型快速搭建专业领域知识问答机器人
Qwen2-VL是一款具备高级图像和视频理解能力的多模态模型,支持多种语言,适用于多模态应用开发。通过PAI和LLaMA Factory框架,用户可以轻松微调Qwen2-VL模型,快速构建文旅领域的知识问答机器人。本教程详细介绍了从模型部署、微调到对话测试的全过程,帮助开发者高效实现定制化多模态应用。
|
21天前
|
人工智能 调度 算法框架/工具
【AI系统】计算图的调度与执行
深度学习训练过程涉及前向计算、计算损失及更新权重参数。AI框架通过计算图统一表示训练过程,算子作为计算图的节点,由后端硬件高效执行。计算图调度包括算子间的调度、并发调度和异构调度,确保计算资源的有效利用。图执行模式分为单算子执行、整图下沉执行和图切分多设备执行,适应不同场景需求。以PyTorch为例,其算子执行通过两次调度选择合适的Kernel进行张量操作,并支持自动求导。
48 5