谷歌已部署上千AI专用芯片 或对英特尔产生威胁

简介:


北京时间5月19日上午消息,谷歌已开始利用自主设计的处理器去优化人工智能软件的性能。这可能将威胁传统芯片厂商,例如英特尔和英伟达的业务。

谷歌基础设施高级副总裁乌尔斯·霍尔泽(UrsHolzle)在周三的谷歌I/O开发者大会上表示,过去一年,谷歌在数据中心的服务器中部署了“数千个”专门的人工智能芯片,即谷歌所谓的“TensorFlow处理单元”(TPU)。谷歌拒绝透露,这样的芯片具体有多少,但强调谷歌仍在继续使用来自其他厂商的CPU和GPU。

霍尔泽表示:“如果你使用云计算语音识别,那么就会由TPU来处理。如果你使用Android语音识别功能,那么计算任务也会通过TPU。这些芯片的广泛使用已有1年时间。”

谷歌云计算高级副总裁戴安·格林(DianeGreene)表示,谷歌没有计划向第三方销售这些专用芯片。

谷歌和其他大型数据中心运营商是服务器处理器的主要客户,而服务器处理器是英特尔的主要增长引擎和利润来源。英伟达也在这一领域进行投入,希望其芯片能够在未来的数据处理,包括人工智能和机器学习领域扮演更重要的角色。

谷歌的芯片通过PCI-E协议连接计算机,这意味着可以直接插入计算机,增强对人工智能的计算能力。霍尔泽表示,这是谷歌首次尝试为人工智能计算任务设计专门的硬件。随着这一领域的逐渐成熟,谷歌“或许可以很好地”为特定的人工智能任务开发更专用的处理器。

霍尔泽还表示,未来谷歌计划设计更多的系统级元件。

以往,英伟达GPU常常被用于机器学习的计算任务,但该公司也在给GPU加入更多订制化元素。霍尔泽表示:“从某种意义上来说,对于机器学习,GPU太通用。”谷歌没有透露,哪家公司是其TPU芯片的代工商。



本文出处:畅享网
本文来自云栖社区合作伙伴畅享网,了解相关信息可以关注vsharing.com网站。
相关实践学习
部署Stable Diffusion玩转AI绘画(GPU云服务器)
本实验通过在ECS上从零开始部署Stable Diffusion来进行AI绘画创作,开启AIGC盲盒。
目录
相关文章
|
12天前
|
人工智能 Serverless
《AI 剧本生成与动画创作》解决方案体验及部署测评
该解决方案利用阿里云函数计算FC、百炼模型服务和ComfyUI工具,实现从剧本撰写到视频合成的一站式自动化流程。部署文档指引准确,逻辑合理,未遇明显报错。体验耗时约15分钟,内容创作优势显著,降低创作门槛,缩短周期,但非技术用户可能面临理解门槛,特定环节仍需专业知识。总体满足短视频创作者需求,建议优化技术细节,提高易用性和扩展性。
|
13天前
|
人工智能 物联网 开发者
Oumi:开源的AI模型一站式开发平台,涵盖训练、评估和部署模型的综合性平台
Oumi 是一个完全开源的 AI 平台,支持从 1000 万到 4050 亿参数的模型训练,涵盖文本和多模态模型,提供零样板代码开发体验。
196 43
Oumi:开源的AI模型一站式开发平台,涵盖训练、评估和部署模型的综合性平台
|
1月前
|
人工智能 供应链 PyTorch
TimesFM 2.0:用 AI 预测流量、销量和金融市场等走势!谷歌开源超越统计方法的预测模型
TimesFM 2.0 是谷歌研究团队开源的时间序列预测模型,支持长达2048个时间点的单变量预测,具备零样本学习能力,适用于零售、金融、交通等多个领域。
208 23
TimesFM 2.0:用 AI 预测流量、销量和金融市场等走势!谷歌开源超越统计方法的预测模型
|
10天前
|
存储 人工智能 弹性计算
NVIDIA NIM on ACK:优化生成式AI模型的部署与管理
本文结合NVIDIA NIM和阿里云容器服务,提出了基于ACK的完整服务化管理方案,用于优化生成式AI模型的部署和管理。
|
8天前
|
人工智能 资源调度 API
AnythingLLM:34K Star!一键上传文件轻松打造个人知识库,构建只属于你的AI助手,附详细部署教程
AnythingLLM 是一个全栈应用程序,能够将文档、资源转换为上下文,支持多种大语言模型和向量数据库,提供智能聊天功能。
2340 14
|
22小时前
|
人工智能 算法 API
重磅:谷歌AI Gemini 2.0 Pro/Flash已来,国内用户怎么使用?
当人工智能的浪潮席卷全球,谷歌再次站在了时代的潮头。Gemini 2.0,这个名字如今已成为 AI 领域最耀眼的明星。它不仅仅是一个模型的升级,更代表着一场技术革命的开端。2024 年末,Gemini 2.0 Flash 以其疾风骤雨般的速度震撼登场,紧接着,2025 年初,Gemini 2.0 Pro 系列的发布,则将这场革命推向了高潮。谷歌正式宣告,我们已步入 Gemini 2.0 时代!
39 15
|
9天前
|
机器学习/深度学习 存储 人工智能
预定下一个诺奖级AI?谷歌量子纠错AlphaQubit登Nature,10万次模拟实验创新里程碑
谷歌的量子纠错算法AlphaQubit近日登上《自然》杂志,被誉为量子计算纠错领域的重大突破。量子比特易受环境噪声干扰,导致计算错误,而AlphaQubit通过神经网络学习噪声模式,显著提升纠错准确性。实验结果显示,它在Sycamore处理器和Pauli+模拟器上表现优异,优于现有解码算法。尽管面临资源需求高等挑战,AlphaQubit为实用化量子计算带来新希望,并可能推动其他领域创新。论文详见:https://www.nature.com/articles/s41586-024-08148-8
31 5
|
7天前
|
人工智能 负载均衡 搜索推荐
谷歌发布双思维AI Agent:像人类一样思考,重大技术突破!
谷歌近日推出基于“快慢思维”理论的双思维AI Agent系统,模仿人类大脑的两种思维模式:快速直观的Talker(系统1)和深思熟虑的Reasoner(系统2)。Talker负责日常对话与快速响应,Reasoner则处理复杂推理任务。该系统模块化设计,灵活高效,已在睡眠教练等场景中展现应用潜力,但仍面临工作负载平衡与推理准确性等挑战。论文详情见:https://arxiv.org/abs/2410.08328v1
34 1
|
26天前
|
机器学习/深度学习 人工智能 测试技术
登上Nature的AI芯片设计屡遭质疑,谷歌发文反击,Jeff Dean:质疑者连预训练都没做
2020年,谷歌的AlphaChip在Nature上发表并开源,其深度强化学习方法能生成超越人类水平的芯片布局,引发AI在芯片设计领域的研究热潮。然而,ISPD 2023的一篇论文对其性能提出质疑,指出未按Nature论文方法运行、计算资源不足等问题。谷歌DeepMind团队回应,强调AlphaChip已在多代TPU和Alphabet芯片中成功应用,并批驳ISPD论文的主要错误。此外,针对Igor Markov的“元分析”和无根据猜测,谷歌提供了详细的时间线和非机密部署情况,澄清事实并重申AlphaChip的开放性和透明度。
36 13
|
1月前
|
人工智能 弹性计算 JSON
AI大模型复习“搭子”—部署流程演示
本文主要介绍文档智能,介绍利用大模型构建知识库和AI学习助手的部署流程,主要包括以下几方面的内容: 1.什么是文档智能 2.文档智能 & RAG 3.基于文档智能和百炼平台的RAG应用案例