ElasticSearch Bulk 源码解析

本文涉及的产品
检索分析服务 Elasticsearch 版,2核4GB开发者规格 1个月
全局流量管理 GTM,标准版 1个月
云解析 DNS,旗舰版 1个月
简介: 对于RPC类的调用,我会在后文简单提及,只是endpoint不一样,内部处理逻辑还是一样的。这篇只会讲IndexRequest,其他如DeleteRequest,UpdateRequest之类的,我们暂时不涉及。
本来应该先有这篇文章,后有 如何提高ElasticSearch 索引速度才对。不过当时觉得后面一篇文章会更有实际意义一些,所以先写了后面那篇文章。结果现在这篇文章晚了20多天。
前言
读这篇文章前,建议先看看ElasticSearch Rest/RPC 接口解析,有利于你把握ElasticSearch接受处理请求的脉络。对于RPC类的调用,我会在后文简单提及,只是endpoint不一样,内部处理逻辑还是一样的。这篇只会讲IndexRequest,其他如DeleteRequest,UpdateRequest之类的,我们暂时不涉及。

类处理路径

RestBulkAction -> 
            TransportBulkAction -> 
                       TransportShardBulkAction
其中TransportShardBulkAction比较特殊,有个继承结构:
   TransportShardBulkAction < TransportReplicationAction < TransportAction
主入口是TransportAction,具体的业务逻辑实现分布到子类(TransportReplicationAction)和孙子类(TransportShardBulkAction)里了。
另外,我们也会提及org.elasticsearch.index.engine.Engine相关的东西,从而让大家清楚的了解ES是如何和Lucene关联上的。

RestBulkAction

入口自然是org.elasticsearch.rest.action.bulk.RestBulkAction,一个请求会构建一个BulkRequest对象,BulkRequest.add方法会解析你提交的文本。对于类型为index或者create的(还记得bulk提交的文本格式是啥样子的么?),都会被构建出IndexRequest对象,这些解析后的对象会被放到BulkRequest对象的属性requests里。当然如果是update,delete等则会构建出其他对象,但都会放到requests里。
public class BulkRequest extends ActionRequest<BulkRequest> implements CompositeIndicesRequest {
    //这个就是前面提到的requests
    final List<ActionRequest> requests = new ArrayList<>();  

//这个复杂的方法就是通过http请求参数解析出
//IndexRequest,DeleteRequest,UpdateRequest等然后放到requests里
public BulkRequest add(BytesReference data, 
@Nullable String defaultIndex, 
@Nullable String defaultType, 
@Nullable String defaultRouting, 
@Nullable String[] defaultFields, 
@Nullable Object payload, boolean allowExplicitIndex) throws Exception {
        XContent xContent = XContentFactory.xContent(data);
        int line = 0;
        int from = 0;
        int length = data.length();
        byte marker = xContent.streamSeparator();
        while (true) {
接着通过NodeClient将请求发送到TransportBulkAction类(回忆下之前文章里提到的映射关系,譬如  TransportAction,两层映射关系解析  )。对应的方法如下:
//这里的client其实是NodeClient
client.bulk(bulkRequest, new RestBuilderListener<BulkResponse>(channel) {
TransportBulkAction
看这个类的签名:
public class TransportBulkAction extends HandledTransportAction<BulkRequest, BulkResponse> {
实现了HandledTransportAction,说明这个类同时也是RPC接口的逻辑处理类。如果你点进HandledTransportAction就能看到ES里经典的messageReceived方法了。这个是题外话
该类对应的入口是:
protected void doExecute(final BulkRequest bulkRequest, final ActionListener<BulkResponse> listener) {
这里的bulkRequest 就是前面RestBulkAction组装好的。该方法第一步是判断是不是需要自动建索引,如果索引不存在,就自动创建了。
接着通过executeBulk方法进入原来的流程。在该方法中,对bulkRequest.requests 进行了两次for循环。
第一次判定如果是IndexRequest就调用IndexRequest.process方法,主要是为了解析出timestamp,routing,id,parent 等字段。
第二次是为了对数据进行分拣。大致是为了形成这么一种结构:
//这里的BulkItemRequest来源于 IndexRequest等
Map[ShardId, List[BulkItemRequest]]
接着对新形成的这个结构(ShardId -> List[BulkItemRequest])做循环,也就是针对每个ShardId里的数据进行统一处理。有了ShardId,bulkRequest,List[BulkItemRequest]等信息后,统一封装成BulkShardRequest。从名字看就很好理解,就是对属于同一ShardId的数据构建一个新的类似BulkRequest的对象。
接着就到TransportShardBulkAction,TransportReplicationAction,TransportAction 三代人出场了:
//这里的shardBulkAction 是TransportShardBulkAction
shardBulkAction.execute(bulkShardRequest, new ActionListener<BulkShardResponse>() {
TransportReplicationAction/TransportShardBulkAction
TransportAction是一个通用的主类,具体逻辑还是其子类来实现。虽然前面提到shardBulkAction是TransportShardBulkAction,但其实流程逻辑还是TransportReplicationAction来完成的。入口在该类的doExecute方法:
@Override
    protected void doExecute(Request request, ActionListener<Response> listener) {
        new PrimaryPhase(request, listener).run();
    }
我们知道在ES里有主从分片的概念,所以一条数据被索引后需要经过两个阶段:
  1. 将数据写入Primary(主分片)
  2. 将数据写入Replication(从分片)
至于为什么不直接从Primary进行复制,而是将数据分别写入到Primary和Replication我觉得主要考虑如果一旦Primary是损坏的,不至于影响到Replication(考虑下,如果Primary是损坏的文件,然后所有的Replication如果是直接复制过来,就都坏了)。
又扯远了。我们看到doExecute 首先是进入PrimaryPhase阶段,也就是写主分片。

Primary Phase

在PrimaryPhase.doRun方法里,你会看到两行代码
final ShardIterator shardIt = shards(observer.observedState(), internalRequest);
final ShardRouting primary = resolvePrimary(shardIt);
其中这个ShardIterator是类似 shardId->ShardGroup 的结构。不管这个shardId是什么,它一定是个Replication或者Primary的shardId, ShardGroup 就是Replication和Primary的集合。resolvePrimary方法则是遍历这个集合,然后找出Primary的过程。
知道Primary后就可以判断是转发到别的Node或者直接在本Node处理了:
routeRequestOrPerformLocally(primary, shardIt);
如果Primary就在本节点,直接就处理了:
//我去掉了一些无关代码哈
if (primary.currentNodeId().equals(observer.observedState().nodes().localNodeId())) {
                try {
                    threadPool.executor(executor).execute(new AbstractRunnable() {
                         @Override
                        protected void doRun() throws Exception {
                            performOnPrimary(primary, shardsIt);
                        }
            }
这里用上了线程池。前面对每个shardId对应的数据集合做处理,其实是顺序循环执行的,这里实现了将数据处理异步化。
在performOnPrimary方法中,BulkShardRequest被转化成了PrimaryOperationRequest,理由也很简单,更加specific了,因为就是针对主分片的Request。接着进入shardOperationOnPrimary 方法,该方法是在孙子类TransportShardBulkAction类里实现的。
protected Tuple<BulkShardResponse, BulkShardRequest> shardOperationOnPrimary(
ClusterState clusterState, 
PrimaryOperationRequest shardRequest) {
到该方法,有两个比较重要的概念会出现:
//伟大的版本号,实现了对并发修改的支持
long[] preVersions = new long[request.items().length];
VersionType[] preVersionTypes = new VersionType[request.items().length];
//事物日志,为Shard Recovery以及
//避免过多的Index Commit做出突出贡献,
//同时也是是实现了GetById的实时性
Translog.Location location = null;
上面两个概念成就了ES从一个简单的全文检索引擎到类No-SQL的转型(好吧,我好像又扯远了)
接着就是for循环了:
//这里的request是BulkShardRequest
//对应的items则是BulkItemRequest集合
for (int requestIndex = 0;
 requestIndex < request.items().length; 
requestIndex++) {
循环会根据BulkItemRequest的不同类型而有了分支。其实就是
IndexRequest,DeleteRequest,UpdateRequest,我们这里依然只讨论IndexRequest。如果发现BulkItemRequest是IndexRequest,进行如下操作:
WriteResult<IndexResponse> result = shardIndexOperation(request, 
indexRequest, 
clusterState, 
indexShard, 
true);
shardIndexOperation里嵌套的核心方法是executeIndexRequestOnPrimary,该方法第一步是获取到Operation对象,
Engine.IndexingOperation operation = prepareIndexOperationOnPrimary(shardRequest, request, indexShard);
Engine对象是比较底层的一个对象了,是对Lucene的IndexWriter,Searcher之类的封装。这里的Engine.IndexingOperation对应的是Create或者Index类。你可以把这两个类理解为待索引的Document,只是还带上了动作。
第二步是判断索引的Mapping是不是要动态更新,如果是,则更新。
第三步执行实际的建索引操作:
final boolean created = operation.execute(indexShard);

operation.execute 额外引出的话题

我们会暂时深入到operate.execute方法里,但这个不是主线,看完后记得回到上面那行代码上。
刚才我们说了operation可能是Create或者Index,我们会以Create为主线进行分析。所谓Create和Index,你可以理解为一个待索引的Document,只是带上动作的语义。
上面对应的execute 方法签名是:
@Overridepublic boolean execute(IndexShard shard) {     shard.create(this);   
 return true;
}
我们看到这里是反向调用indexShard对象的create方法来进行索引的创建。我们来看看IndexShard的create方法:
//我依然做了删减,体现一些核心代码
public void create(Engine.Create create) {        
        engine().create(create);
    }
engine()方法返回的是InternalEngine实例,InternalEngine .innerCreate方法执行到构建索引的操作。这个方法值得分析一下,所以我就贴了一坨的代码。
private void innerCreate(Create create) throws IOException {
        if (engineConfig.isOptimizeAutoGenerateId() && create.autoGeneratedId() && !create.canHaveDuplicates()) {
            // We don't need to lock because this ID cannot be concurrently updated:
            innerCreateNoLock(create, Versions.NOT_FOUND, null);
        } else {
            synchronized (dirtyLock(create.uid())) {
                final long currentVersion;
                final VersionValue versionValue;
                versionValue = versionMap.getUnderLock(create.uid().bytes());
                if (versionValue == null) {
                    currentVersion = loadCurrentVersionFromIndex(create.uid());
                } else {
                    if (engineConfig.isEnableGcDeletes() && versionValue.delete() && (engineConfig.getThreadPool().estimatedTimeInMillis() - versionValue.time()) > engineConfig.getGcDeletesInMillis()) {
                        currentVersion = Versions.NOT_FOUND; // deleted, and GC
                    } else {
                        currentVersion = versionValue.version();
                    }
                }
                innerCreateNoLock(create, currentVersion, versionValue);
            }
        }
    }
首先,如果满足如下三个条件就无需进行版本检查:
  1. index.optimize_auto_generated_id 被设置为true(默认是false,话说注释上说是默认是true,但是我看着觉得像是false)
  2. id设置为自动生成(没有人工设置id)
  3. create.canHaveDuplicates == false ,该参数一般是false
提这个是主要为了说明,譬如一般的运维日志啥的,就不要自己生成ID了,采用自动生成的ID,可以跳过版本检查,从而提高入库的效率。
第二个指的说的是,如果对应文档在缓存中没有找到(versionMap),那么就会由如下的代码执行实际磁盘查询操作:
currentVersion = loadCurrentVersionFromIndex(create.uid());
通过对比create对象里的版本号和从索引文件里加载的版本号 ,最终决定是进行update还是create操作。
在innerCreateNoLock 方法里,你会看到熟悉的Lucene操作,譬如:
indexWriter.addDocument(index.docs().get(0));
//或者
indexWriter.updateDocument(index.uid(), index.docs().get(0));
现在回到TransportShardBulkAction的主线上。执行完下面的代码后:
final boolean created = operation.execute(indexShard);
就能获得对应文档的版本等信息,这些信息会更新对应的IndexRequest等对象。
到目前为止,Primay Phase 完成,接着开始Replication Phase
replicationPhase = new ReplicationPhase(shardsIt, 
primaryResponse.v2(), 
primaryResponse.v1(), 
observer, 
primary, 
internalRequest, 
listener, 
indexShardReference);
finishAndMoveToReplication(replicationPhase);
最后一行代码会启动replicationPhase阶段。

Replication Phase

Replication Phase 流程大致和Primary Phase 相同,就不做过详细的解决,我这里简单提及一下。
ReplicationPhase的doRun方法是入口,核心方法是performOnReplica,如果发现Replication  shardId所属的节点就是自己的话,异步执行shardOperationOnReplica,大体逻辑如下:
threadPool.executor(executor).execute(new AbstractRunnable() {
                        @Override
                        protected void doRun() {
                            try {
                                shardOperationOnReplica(shard.shardId(), replicaRequest);
                                onReplicaSuccess();
                            } catch (Throwable e) {
                                onReplicaFailure(nodeId, e);
                                failReplicaIfNeeded(shard.index(), shard.id(), e);
                            }
                        }
在Replication阶段,shardOperationOnReplica 该方法完成了索引内容解析,mapping动态新增,最后进入索引(和就是前面提到的operation.execute)等动作,所以还是比Primary 阶段更紧凑些。
另外,在Primary Phase 和 Replication Phase, 一个BulkShardRequest 处理完成后(也就是一个Shard 对应的数据集合)才会刷写Translog日志。所以如果发生数据丢失,则可能是多条数据。

总结

这篇文章以流程分析为主,很多细节我们依然没有讲解详细,比如Translog和Version。这些争取能够在后续文章中进一步阐述。另外错误之处在所难免,请大家在评论处提出。
相关实践学习
使用阿里云Elasticsearch体验信息检索加速
通过创建登录阿里云Elasticsearch集群,使用DataWorks将MySQL数据同步至Elasticsearch,体验多条件检索效果,简单展示数据同步和信息检索加速的过程和操作。
ElasticSearch 入门精讲
ElasticSearch是一个开源的、基于Lucene的、分布式、高扩展、高实时的搜索与数据分析引擎。根据DB-Engines的排名显示,Elasticsearch是最受欢迎的企业搜索引擎,其次是Apache Solr(也是基于Lucene)。 ElasticSearch的实现原理主要分为以下几个步骤: 用户将数据提交到Elastic Search 数据库中 通过分词控制器去将对应的语句分词,将其权重和分词结果一并存入数据 当用户搜索数据时候,再根据权重将结果排名、打分 将返回结果呈现给用户 Elasticsearch可以用于搜索各种文档。它提供可扩展的搜索,具有接近实时的搜索,并支持多租户。
目录
相关文章
|
3天前
|
监控 Java 应用服务中间件
高级java面试---spring.factories文件的解析源码API机制
【11月更文挑战第20天】Spring Boot是一个用于快速构建基于Spring框架的应用程序的开源框架。它通过自动配置、起步依赖和内嵌服务器等特性,极大地简化了Spring应用的开发和部署过程。本文将深入探讨Spring Boot的背景历史、业务场景、功能点以及底层原理,并通过Java代码手写模拟Spring Boot的启动过程,特别是spring.factories文件的解析源码API机制。
16 2
|
1月前
|
缓存 Java 程序员
Map - LinkedHashSet&Map源码解析
Map - LinkedHashSet&Map源码解析
67 0
|
1月前
|
算法 Java 容器
Map - HashSet & HashMap 源码解析
Map - HashSet & HashMap 源码解析
52 0
|
4天前
|
存储 安全 Linux
Golang的GMP调度模型与源码解析
【11月更文挑战第11天】GMP 调度模型是 Go 语言运行时系统的核心部分,用于高效管理和调度大量协程(goroutine)。它通过少量的操作系统线程(M)和逻辑处理器(P)来调度大量的轻量级协程(G),从而实现高性能的并发处理。GMP 模型通过本地队列和全局队列来减少锁竞争,提高调度效率。在 Go 源码中,`runtime.h` 文件定义了关键数据结构,`schedule()` 和 `findrunnable()` 函数实现了核心调度逻辑。通过深入研究 GMP 模型,可以更好地理解 Go 语言的并发机制。
|
16天前
|
消息中间件 缓存 安全
Future与FutureTask源码解析,接口阻塞问题及解决方案
【11月更文挑战第5天】在Java开发中,多线程编程是提高系统并发性能和资源利用率的重要手段。然而,多线程编程也带来了诸如线程安全、死锁、接口阻塞等一系列复杂问题。本文将深度剖析多线程优化技巧、Future与FutureTask的源码、接口阻塞问题及解决方案,并通过具体业务场景和Java代码示例进行实战演示。
37 3
|
1月前
|
存储
让星星⭐月亮告诉你,HashMap的put方法源码解析及其中两种会触发扩容的场景(足够详尽,有问题欢迎指正~)
`HashMap`的`put`方法通过调用`putVal`实现,主要涉及两个场景下的扩容操作:1. 初始化时,链表数组的初始容量设为16,阈值设为12;2. 当存储的元素个数超过阈值时,链表数组的容量和阈值均翻倍。`putVal`方法处理键值对的插入,包括链表和红黑树的转换,确保高效的数据存取。
53 5
|
1月前
|
Java Spring
Spring底层架构源码解析(三)
Spring底层架构源码解析(三)
109 5
|
1月前
|
存储 缓存 监控
深入解析:Elasticsearch集群性能调优策略与最佳实践
【10月更文挑战第8天】Elasticsearch 是一个分布式的、基于 RESTful 风格的搜索和数据分析引擎,它能够快速地存储、搜索和分析大量数据。随着企业对实时数据处理需求的增长,Elasticsearch 被广泛应用于日志分析、全文搜索、安全信息和事件管理(SIEM)等领域。然而,为了确保 Elasticsearch 集群能够高效运行并满足业务需求,需要进行一系列的性能调优工作。
80 3
|
1月前
|
XML Java 数据格式
Spring底层架构源码解析(二)
Spring底层架构源码解析(二)
|
1月前
|
算法 Java 程序员
Map - TreeSet & TreeMap 源码解析
Map - TreeSet & TreeMap 源码解析
33 0

推荐镜像

更多